Journal of Inequalities in Pure and
I > <M Applied Mathematics

0 http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 105, 2003

KANTOROVICH TYPE INEQUALITIES FOR 1>p>0

MARIKO GIGA

DEPARTMENT OFMATHEMATICS
NIPPONMEDICAL SCHOOL
2-297-2 KOSUGINAKAHARA -KU
KAWASAKI 211-0063 APAN.

mariko@nms.ac.|p

Received 24 May, 2003; accepted 28 June, 2003
Communicated by T. Furuta

ABSTRACT. We shall discuss operator inequalities for> p > 0 associated with Hélder-
McCarthy and Kantorovich inequalities.
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1. INTRODUCTION

In this paper, an operator is taken to be a bounded linear operator on a Hilbert/$pace
An operator? is said to be positive (denoted By > 0) if (T'z,z) > 0, alsoT is said to be
strictly positive (denoted by" > 0) if 7" is positive and invertible. The celebrated Kantorovich
inequality asserts that if is a strictly positive operator such th&f/ > 7" > mlI > 0, then

(T 2, 2) (Tz,x) < (72;;_1\]@)2 holds for every unit vectar in H. There have been many papers
published on Kantorovich type inequalities, some of them are the papers of B. Mond and J.
Pe&aric [9], [10], and [11]. Other examples of Kantorovich type inequalities can be found in the
work of Furuta[4] and the extended work [8]. More general results may be seen in the work of
Li and Mathias in[[7]. We shall discuss operator inequalitiesifor p > 0 associated with the

Holder-McCarthy and Kantorovich inequalities as a complementary result of [6].

2. OPERATOR INEQUALITIES FOR 1 > p > 0 ASSOCIATED WITH
HOLDER-M CCARTHY AND KANTOROVICH |NEQUALITIES

Theorem 2.1. LetT be a strictly positive operator on a Hilbert spaéésuch thatM/ 1 > T >
ml > 0, whereM > m > 0. Also, letf(t¢) be a real valued continuous concave function on
[m, M] and letl > g > 0.

Then the following inequality holds for every unit vector

(2.1) f(Tz,2)) = (f(T)x,x) =2 K(m, M, f,q)(Tz, x)*,
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whereK (m, M, f, q) is defined by

K(m, M. f,q)
(. (mf(M) —Mf(m)) ((¢—D(f(M) = fm)\* . .
= T ) (qGs(on - iy ) Case ks
=4 By, = % if Case 2 holds;
f(M) .
\ B; = A if Case 3 holds,

where Case 1, Case 2 and Case 3 are as follows:

Case L: $(1) > f(m). f(]y) . f(::) andf(mm)q > f%) - ;);(m) . f(]y)q,
Case 2: £01) > fm). f%@ _ fEZL) andfgzz)q < f%) - j;(m)’
Case 3 F(M) > £(m) f(]y) _ f(::) andf(ﬂz;@q . f%) - Qm

Theorenj 2.]1 easily implies the following result.

Corollary 2.2. LetT be a strictly positive operator on a Hilbert spaéésuch thatM [ > T >
ml > 0, whereM > m > 0. Also letl > p > 0and1 > ¢ > 0, then we have

(2.2) (Tz,)? > (T"x,z) > K(m, M,p, q)(T, z)",
whereK (m, M, p, q) is defined by

( MP —mp

K(l)(m7M7p7 q) ifmP~lg> M > MP~ g,
| MP — m?
K(m,M,p,q) = ¢ mP™4 if mP~1q < —m;
M —m
MP — mP
MP—a if MP~lg> ———
\ T M —m

where KM (m, M, p, q) is defined by

(2.3) K(l)(m, M,p,q) = (mMP — Mmp) ((q — 1) (MP — mp)>q.

(q—1)(M —m) \ q(mMP — Mmp)

3. PROOFS OF THE RESULTS IN §2

We state the following fundamental lemma before giving proofs of the resulfs in §2.

Lemma 3.1. Let i(t) be defined by (3]1) ofv, co) for any real numbey; such thaty € (0,1)
and any real number&” andk, andM > m > 0

(3.1) h(t):tiq(m ]\Z(:Z(zﬁ—m)).
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Thenh(t) has the following lower boun®D(m, M, k, K, q) on [m, M]:
BD(m, Mk, K,q)

( (mK — MkE) (¢ —1)(K —k)\? .
B, = f 1 holds;
'Sl 00T —m) \gfmk k) ) EESe RO
=4 By = ﬁ if Case 2 holds;
md
K .
\B3 = e if Case 3 holds,

where Case 1, Case 2 and Case 3 are as follows:
k K —k K

CaselK>k,%<%anqu2M_m2Mq;
Case 2K > k,% < %and%q< ]\Z(:f@’
Case 3K > k,% < %and%q> ]\[;:Z
Proof. We have that/(¢,) = 0 when
ne G e e ) =

and the conditions in Case 1 ensure that t; < M, h”(t,) > 0 andh(t) has the lower bound
B, = h(t;) on[m, M]. By the geometric properties &f(t), the conditions in Case 2 ensure
that0 < t; < m andh(t) has the lower bound, = h(m) on[m, M]. Also the conditions in
Case 3 ensure that > M andh(t) has the lower bound; = h(M) on [m, M]. O

Proof of Theorem 2|1As f(¢) is a real valued continuous concave functiorjien\/], we have

32) 1(0) 2 (m) + LA =T

By applying the standard operational calculus of positive operatoo (3.1), sinceM >
(T'z,z) > m, we obtain for every unit vectar

—m) foranyt e [m,M].

33) (1)) > fim) + LTI (g 0y )
Multiplying by (T'z, z)~ on both sides of (3]2), we have

(3.4) (Tz,z)™(f(T)x,z) = h(T'x, z)),

where

Then we obtain

(3.5) (f(T)z,x) > l min h(t)} (T, ).

m<t<M

PuttingK = f(M) andk = f(m) in Lemmd 3.1, so that the latter inequality pf (2.1) follows
by (3.3) and Lemma 3|1 and the former inequality[in|(2.1) follows by the Jensen inequality
(for examples, seé [1],[2]. [3] and[7]) sing&t) is a concave function. Whence the proof is
complete by Lemmia 3. 1. O
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Proof of Corollary{2.2.Put f(t) = ¢ for p € (0,1) in Theoren] 2]1. As(¢) is a real valued
continuous concave function dm, M|, M? > m? and M?~! < mP~! hold for anyp € (0, 1),

thatis,f(M) > f(m) and20 < L) for anyp € (0,1).
Whence the proof of Corolla- y 4.2 is complete by Theojem 2.1. O

4. APPLICATION OF COROLLARY [2.2T0 KANTOROVICH TYPE OPERATOR
INEQUALITIES

Theorem 4.1.Let A and B be two strictly positive operators on a Hilbert spaflesuch that
MI>A>miI >0andMyl > B > mol > 0, whereM; > my; > 0and My > my > 0 and
A > B.

(@) If p > 1 andq > 1, then the following inequality holds:
K(m27 M2ap7 Q)Aq Z Bp’
whereK (my, My, p, q) is defined by

p

M mb
KO M if <2 2t
(m27 2, P, q) m2 q M2 N m2 q;
Mp
K(my, My, p,q) = ¢ mb* if mb g > —2—2
My —
MY mp
MP if MY 'q < —2
\ 2 q M, —

(b) If p < 0andq < 0, then the following inequality holds:
K(mb M17p7 Q)Bq 2 Apa
whereK (m, My, p, q) is defined by

( : MY —mb _
KO (my, My, p,q) if mi~'q < m < M{™'g;
: M?
K(my, My,p,q) = my™? if my~ g > —1
My —
Mp
MPa if MY 'qg < 11—
| q< M, —
Cc >p>0Uan > g > U, tnen the 1olilowing Inequality nolas.
If 1 0andl 0, then the following i lit hld
(41) AP Z K(mhMlap? Q)Bqa
( ] Mp_ p
KW (my, My, p,q) if mi~'q > ﬁ > M g;
. M? —m?
K(my, My,p,q) = ¢ mi™? it mP g < —ml
M, —
Mp—m
MPa if MP~'q > —1
[ ! q M, —

where K" (m, M, p, q) in (a), (b) and (c) is defined i (2.3).

Proof. We have only to prove (c) since (a) and (b) are both shown/in [6].
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Proof of (c).For every unit vectog, 1 > p > 0 and1 > ¢ > 0, we have
(APx,x) > K(mq, My,p, q)(Az,z)? by Corollary[2.2
> K(my, My, p,q)(Bzx,x)? sinceA> B >0andl >¢q>0
> K(mq, My, p,q)(Biz,xz) by the Holder-McCarthy inequality, sinde> ¢ > 0
so that[(4.]1) is shown and the proof is complete. O

Corollary 4.2. Let A and B be two strictly positive operators on a Hilbert spaflesuch that
MI > A>mI >0andMyl > B > mel > 0, whereM; > my; > 0, My > my > 0 and
A > B.
(i) If p > 1, then the following inequality holds
K®(mg, My, p) AP > BP.
(ii) If p <0, then then the following inequality holds
K(l)(mla Mlap)Bp Z Ap’

where
M? — M) ((p— 1)(M? — m?)\?
KO (m, M, p) = ™ .
) = 1 00— ) \ plme — 3w
Proof of Corollary[4.2.Sincet? is a convex function fop > 1 orp < 0, and¢” is a concave
function forl > p > 0, we have only to pup = ¢ in Theorem 4.]1. O

Remark 4.3. We remark that (i) of Corollary 4]2 is shown in [4, Theorem 2.1] and Theorem 1
in 83.6.2 of [5]. Inthe casp = ¢ € (0, 1), the result[(4.]1) may be given as follow$:> B > 0
ensures thatl? > BP > K(my, My,p,p)BP for all p € (0,1). In fact, the first inequality
follows by the Léwner-Heinz inequality and the second one holds sifee;, M;,p,p) < 1
which is derived from[(2]2).

Remark 4.4. We remark that fop > 1 andq > 1, K" (m, M, p, q) can be rewritten as
(mMP — MmP) ((q—1)(MP —mP)\?
@—nwwwm(qmmﬂ—Mmm>
(-1 (M)
¢ (M —m)(mM?—mp)e!
and in fact this latter simple form is inl[6].

KW (m, M,p,q) =
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