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Abstract

Let ϕ be a positive linear functional on the algebra of n × n complex matrices
and p, q be positive numbers such that 1

p + 1
q = 1. We prove that if for any pair

A, B of positive semi-definite n× n matrices the inequality

ϕ(|AB|) ≤ ϕ(Ap)
p

+
ϕ(Bq)

q

holds, then ϕ is a positive scalar multiple of the trace.
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In what follows,Mn stands for the *-algebra ofn × n complex matrices,
M+

n stands for the cone of positive semi-definite matrices,p andq are positive
numbers such that1

p
+ 1

q
= 1. ForA ∈ Mn, |A| is understood as the modulus

|A| = (A∗A)1/2.
T. Ando proved in [1] that for any pairA, B ∈ Mn there is a unitaryU ∈

Mn such that

U∗|AB∗|U ≤ |A|p

p
+
|B|q

q
.
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It follows immediately that for any pairA, B ∈M+
n the following trace version

of Young’s inequality holds:

Tr(|AB|) ≤ Tr(Ap)

p
+

Tr(Bq)

q
.

The aim of this note is to show that the latter inequality characterizes the
trace among the positive linear functionals onMn.

Theorem 1. Letϕ be a positive linear functional onMn such that for any pair
A, B ∈M+

n the inequality

(1) ϕ(|AB|) ≤ ϕ(Ap)

p
+

ϕ(Bq)

q

holds. Thenϕ = k Tr for some nonnegative numberk.

Proof. As is well known, every positive linear functionalϕ onMn can be rep-
resented in the formϕ(·) = Tr(Sϕ·) for someSϕ ∈ M+

n . It is easily seen
that without loss of generality we can assume thatSϕ = diag(α1, α2, . . . , αn),
and we have to prove thatαi = αj for all i, j = 1, . . . , n. Clearly, it suffices
to prove thatα1 = α2. Inequality (1) must hold, in particular, for all matrices
A = [aij]

n
i,j=1, B = [bij]

n
i,j=1 in M+

n such that0 = aij = bij if 3 ≤ i ≤ n or
3 ≤ j ≤ n. Thus the proof of the theorem reduces to the following lemma.

Lemma 2. Let S = diag
(

1
2

+ s, 1
2
− s

)
, where0 ≤ s ≤ 1

2
. If for every pair

A, B ∈M+
2 the inequality

(2) Tr(S |AB|) ≤ Tr(SAp)

p
+

Tr(SBq)

q
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holds, thens = 0.

Proof of Lemma2. Let0 ≤ ε ≤ 1
2
, δ = 1

4
−ε2. Let us consider two projections

P1 =

(
1
2
− ε

√
δ√

δ 1
2

+ ε

)
, P2 =

(
1
2

+ ε
√

δ√
δ 1

2
− ε

)
.

Calculate|P1P2|:

P2P1 =

(
2δ (1 + 2ε)

√
δ

(1− 2ε)
√

δ 2δ

)
, P2P1P2 = 4δP2,

hence
|P1P2| = 2

√
δP2 =

√
1− 4ε2P2.

SubstituteA = αP1, B = βP2 with α, β > 0 into (2) and perform the calcula-
tions. Then the left hand side in (2) becomes

αβ
√

1− 4ε2

(
1

2
+ 2εs

)
and the right hand one becomes

αp
(

1
2
− 2εs

)
p

+
βq

(
1
2

+ 2εs
)

q
.

Now, takeα = 1, β =
(

1−4εs
1+4εs

) 1
q . Then we obtain as an implication of (2):

1

2
(1− 4εs)

1
q (1 + 4εs)

1
p

√
1− 4ε2 ≤ 1

2
(1− 4εs),
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which implies

(3) (1− 4ε2)
p
2 ≤ 1− 4εs

1 + 4εs
.

By the Taylor formulas,

(1− 4ε2)
p
2 = 1− 2pε2 + o(ε2) = 1 + o(ε) (ε → 0),

1− 4εs

1 + 4εs
= 1− 8εs + o(ε) (ε → 0).

Since we have supposed that0 ≤ s, the inequality (3) can hold for allε ∈
(
0, 1

2

]
only if s = 0.
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