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ABSTRACT. A generalization of Constantin’s integral inequality and its discrete analogy are
established. A discrete analogue of Okrasinsky’s model for the infiltration phenomena of a fluid
is also discussed to convey the usefulness of the discrete inequality obtained.
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1. INTRODUCTION

L. Ou-lang [9] studied the boundedness of solutions for some nonautonomuous second order
linear differential equations by means of a nonlinear integral inequality. This integral inequal-
ity had been frequently used by authors to obtain global existence, uniqueness and stability
properties of various nonlinear differential equations. A number of generalizations and discrete
analogues of this inequality and their new applications have appeared in the literature. See, for
example, B.G. Pachpatte ([10]/=]12]) and the present author [13][14] and the references given
therein.

In 1996, A. Constantir |2] established the following interesting alternative result for a gener-
alized Ou-lang type integral inequality given by B. G. Pachpatte [12]:

Theorem A. LetT > 0,k > 0,andu, f,g € C([0,7] Ry),R. = [0,00). Further, let
w € C(R4,R;) be nondecreasingy(r) > 0 for » > 0 and f;:’ wd(’;) = oo hold for some
numberry > 0. Then the integral inequality

c<ie [ Lo [+ [ oo ae| bas, vefom
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implies
w it [see{aw [11©+ @l s 1epT
0 0
whereGG~! denotes the inverse function@fand

G(r) ::/T0 ﬁ, r>ry, 1>ryg>0.

Applying the above result and a topological transversality theorem, A. Granas [4] proved a
nonlocal existence theorem for a certain class of initial value problems of nonlinear integrod-
ifferential equations. We refer to D. O’'Regan and M. Meehan [6] for more existence results
obtained by means of topological transversality theorems.

The purpose of the present paper is to obtain a new generalization of Constantin’s inequality
and its discrete analogue. The integral inequality obtained can be used to study some more
general initial value problems by following the same argument as that applied in Constantin [2].
A discrete analogue of W.Okrasinsky’s mathematical model for the infiltration phenomena of a
fluid (seel[7] and([8]) is discussed to convey the usefulness of the discrete inequality given in
the paper.

2. NONLINEAR INTEGRAL INEQUALITY

Theorem 2.1.Letu, c € C(R,, R, ) with c nondecreasing, ang € C*(R,, R, ) with ¢’ non-
negative and nondecreasing. L&t, &), g(t,€), h(t,&) € C(R. x Ry, R, ) be nondecreasing
in ¢t for every¢ fixed. Further, letw € C(R,R,) be nondecreasingy(r) > 0 for » > 0 and
[>° 5. = o0 hold for some number, > 0. Then the integral inequality

ro w(s)

D) wlu) <ct)+ [ {59 uto)
< o)+ [ ats. 0w @) de| +nieo) won bas, ee o
implies
@2) u(t) < K+ [ St
<o e+ [ 109+ ool def as, 1epT]

herein
t
2.9 K(t) = ¢ 0]+ [ hit.s)as.
0
G, p~tdenote the inverse function 6f o, respectively, and
(2.4) G()~—/TL > 1>r9>0
. r)i= . w(8)+5, r = To, To .

Note that, by Constatin [1] the above functiéhis positive, strictly increasing and satisfies
the conditionG(r) — co asr — oo.
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Proof. Lettingt = 0 in (2.1)), we observe that inequality (2.2) holds trivially foe= 0. Fixing
an arbitrary numbet, € (0, 7"),we define or0, ¢,] a positive functiore(t) by

@5) =(0) = et +e+ [ { 1000905 luts)
< uts) + [t ) de| + htto. )¢ (o)} s

wheres > 0 is an arbitrary small constant. By inequality (2.1) we have
(2.6) u(t) <o Hz(t)], te0,ty).
From (2.%) we derive by differentiation

28) = flto, O [u(t) [u<t> + [ atto.ulute) dg} £ h(to, )¢ [ult)
<o [p~ [=(0)] {f(tmt) [so-l[zw] + [t 9w (760 dg] ; h(to,w} |

fort € [0, ], sincey’ is nonnegative and nondecreasing. Hence we obtain
d 20
A P E )]
< f(to,t) [90_1[2@)] + / g(to, &)w (¢~ [2(8)]) df} +h(to,t), t € [0,t0],

0
Integrating both sides of the last relation from Q teve get

to

o) < o [(0)] + / h(to, s)ds

o [ st [ 0+ [ otto w7 @) deas, < ot

Define a function(t),0 < t < t¢, by the right member of the last relation, we have

(2.7) (] <w(t), telot],
where
(2.8) v(0) = ' [2(0)] + /0 O h(to, s)ds.

By differentiation we derive
(29) V(1) = f(t,1) [so‘l[Z(t)] +/0 g(to, &)w (so‘l[Z(ﬁ)])dé}

< f(to, 1) [U(t) +/0 g(to, §w (U(f))df} = f(to, t)Qt), te€[0,t0].

where

(2.10) Q(0) = v(0) = o~ [2(0)] + /0 " h(to, 5)ds.
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and
(¢ ) = v'(t) + g(to, hw (v(t))
S (o, £)21) + g(to, )w (1)), € [0, %0].
Becaus€(t), and hencev (€2(t)), is positive on0, ¢, the last inequality can be rewritten as
()
Qt) +w (Q1))

Integrating both sides of the last relation from Ottand in view of the definition o7, we
obtain

(2.11)

< f(to,t) +g(to,t), te€[0,%)

Gla) -G lao) < [ Ftor )+ glto, 1 ds, £ € [0,to].

By (2.10) and the fact tha¥(r) — oo asr — oo,the last relation yields

Q1) < Gl{G {w[z(om/oto h(to,s)ds} +/Ot F(to, s) + g(to, s)] ds}, £ [0, 0]

Substituting the last relation intp (2.9), then integrating from 0 tee derive fort € [0, ¢,] that

to

u(t) < ¢ te(ty) + € +/0 h(to, s)ds

+ /Ot f(to,s)G™* {G {wl[c(to) +e] + /Oto h(to, s)ds]
AR g(to,@]df}ds

where we used the relatian(t) < p=![z(t)] < v(t) < Q(¥).
Takingt = ¢, and lettinge — 0, from the last relation we have

u(to) < K (o) Jr/oof(lfo;S)G_1 { G [K(to)] + /0 [f (t0,€) + g(to, €)] dé} ds

whereK (t) is defined by[(2]3). This means that the desired inequglity (2.2) is valid whef.
Since the choice of, from (0, 7' is arbitrary, the proof of Theorepn 2.1 is complete. O

If w(r) = r holds in Theorem 2|1, the inequalify (2/11) can be replaced by the following
sharper relation

v'(t)

Q(t)
and functions7,G~! can be replaced b§ (r) = In (r/rq), H () = roe", respectively. Hence
we derive the following:

< f(to,t)+g(t0,t), te [07t0]7

Corollary 2.2. Under the conditions of Theordm P.1, the integral inequality
@12) olut)] <)+ [ { #0900
0
< uter+ [ ot 0] + o s, ee o)
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implies
@13) u(t < (7 et) + [ nte.s)as)
« <1+/Otf(t,s){exp/os [f(t,§)+g(t,§)]d§} ds), £ [0,7].

If o(n) =nP,p>1,c(t)=kP >0andf(t,s),g(t,s),h(t,s) do not depend on the variable
t, by Theoreni 2]1 we have the following:

Corollary 2.3. Letp > 1,k > 0 be constants and, f,g € C ([0,7],R;). Then the integral
inequality

e <y t {f(s)up‘l(S) [u<s> + [ ot ) ds} }ds, teo,T)
implies
w < e {ow+ [ +a@r i as tep

Remark 2.4. Clearly, Constantin’s Theorejm A is the special case 2 of the last result.

3. DISCRETE ANALOGUE

In this section we will establish a discrete analogue of Thegrein 2.1. Dend{ettmy set of
nonnegative integers and g = {n €N: n < M} for some natural numbeél/. For simplicity,
we denote by< (P, ) the class of functions defined on getith range in sef). For a function
u € K(N,R), R = (—o0,00), we define the forward difference operattasrby Au(n) =
u(n + 1) —u(n).

As usual, we suppose that the empty sum and empty product are zero and one, respectively .
For instance,

—1 —1
Zp(s) =0 and Hp(s) =1
5=0 s=0

hold for any functiorp(n), n € N.

Theorem 3.1. Let the functionsu, ¢ be as defined in Theorgm P.1 and: € K (N, R, ) with
c(n) nondecreasing. Further, lef(n, s), g(n,s), h(n,s) € K(N x N,R,) be nondecreasing
with respect to for everys fixed. Then the discrete inequality

(3.1) plu(n)] < c(n) + X_j{ £, )¢ u(s)]
< Lu(s) + 3 a5, Ow (u(6) +h<n,s>¢[u<s>}}, n e N,
£=0
implies
(2 ul) <L)+ f(ns)o! {G[Lw 3 ) +g<n,£>1}, neN,
s=0 §=0
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whereG, G~ are as defined in Theorgm 2.1 and
n—1

(3.3) L(n) :== ¢ e(n)] + Z h(n,s).
s=0

Proof. Fixing an arbitrary positive integern € (0, M), we defineontheset:= {0,1,...,m}
a positive functiorz(n) € K(J, (0,00)) by

A(n) = c(m) +e + i{ Fom, )9 Tu(5)]
< uls) + 3 glm, €w (u(©)) +h<m,s>¢'[u<s>]},

wheree is an arbitrary positive constant, thefd) = ¢(m) + ¢ > 0 and by [3.1) we have
(3.4) u(n) < o z(n)], ne€J

Using the last relation, we derive

s—1
£=0
)

Az(n) = f(m,n)¢'Tu(n)] + h(m, )¢ [u(n)]

< ¢ [ z(n)]]

x {f<m, n) [Mzm)] £ glm, sy (97 [=(5))

By the mean value theorem and the last relation, we obtain

_1 Az(n)
A Bl S ST

< J(m.n) [so—l[zm)] £ glm, sy (9 =(5))

—l—h(m,n)}, ne.J.

+ h(m,n), n€J,

sincey’~tandz(n) are nondecreasing. Substituting= ¢ in the last relation and then summing
over{ =0,1,2,...,n — 1, we obtain

o )] < o M 0] + 3 h(m, )
£=0
n—1 £—-1
3 fm.9) [wl[z(m £ glm. s (wl[z(sn)] |
£=0 s=0

wheren € J, sinceh(n, s) is nonnegative and: > n holds. Now, defining by (n) the right
member of the last relation, we have

0(0) = 7 2(0)] + 3 hm. ) = M em) + <] + 3 h(m,€)
£=0

0

s
Il

and
(3.5) o 'z(n)] <wv(n), ne.J
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By (3.5) we easily derive

Av(n) = flm,m) | 2] + 3 g(m, s (90_1[2(8)])]

< fm.m) |o() + 3 glm. s>w<v<s>>] mel
or ) -
(3.6) Av(n) < f(m,n)y(n), n € J,
where

y(n) :=v(n) + ig(m, s)w (v(s)), mneJ

Clearly,y(0) = v(0) holds and by][(3]6) we have
Ay(n) < Av(n) + g(m, n)w (v(n)) < [f(m,n) + g(m,n)] [y(n) +w (y(n))],

i.e.,
Ay(n)

y(n) +w(y(n))
Becausey(n), w(r) are positive and nondecreasing, we have

y(n) s n—1 Ay(s) n—
/y(O) stuls) = “ y(s) + w(y(s)) < ) Lf(m,s) +g(m, )],

< f(m,n) +g(m,n), nelJ

—_

Il
=)

S

or

[y

n—

Gly(n)] = Gly(0)] < ) _[f(m,s) +g(m,s)], ne.

V)
o

SinceG(r) — ccasr — oo, the last relation yields

+ [f(m,S)Jrg(m,S)]}, neJ.

sS=

y(n) < G™! {G

o elm) + <]+ 3 h(m,€)
£=0

Substituting this relation intg (3.6), settimg= s and then summing over=0,1,...,n — 1,
we have

m—1

o [e(m) + €]+ ) h(m,¢)
£=0

xG—l{G +i[f(m,§)+g(m,§>]}, ne.l.
£=0

Because:(n) < ¢~ ![z(n)] < v(n), n € J, by lettingn = m ande — 0 in the last relation, we
obtain

u(m) < L(m) + i f(m,s)G™ {G[L(m)] + Y [f(m, &) + g(m, )]} :

This means that the desired inequalty [3.2) is valid whea m. Sincem € (0, M) is chosen
arbitrarily and by[(3.1), inequality (3.2) holds also foe= 0. Thus the proof of Theorefn 3.1 is
complete. O
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The following result is a special case of Theoffem 3.1 whep = 7, w(r) = r:
Corollary 3.2. Under the conditions of Theordm B.1,the discrete inequality

(3.7) uP(n) < cP(n)

s {fm, $)u(s)

wherep > 1 is a real number, implies that

u(s) + ig(s,é")u(f) + h(n, s)u(s)}, n € Ny,
=0

(3.8) u(n) <

x{l+if(n,s)expi[f(n, )+ g(n, )]}, n € Np.
s=0 €=0

Note that, the particular case of Theorgm| 3.1 whgn) = 7% c(n) = k* > 0 and the
functionsf(n, s), g(n, s), h(n, s) are independent of the variable yields a discrete analogue
of the Constantin integral inequality.

4. DISCRETE M ODEL OF INFILTRATION

The mathematical model of the infiltration phenomena of a fluid due to Okrasinsky [7] was
studied in[[2] (see, als0[8]):

(4.1) uw(t) = L+ /t P(t — s)u(s)ds, teR,,
0

whereL > 0 is a constantP € C'(R,,R,) andu denotes the height of the percolating fluid
above the horizontal impervious base, multiplied by a positive number. This model describes
the infiltration phenomena of a fluid from a cylindrical reservoir into an isotropic homogeneous
porous medium. Under the conditio®‘is differentiable and nondecreasing”, Constantin ob-
tained the existence and uniqueness of a solutienC* (R, (0, o)) of equation[(4.]l). Some
known results for equation (4.1) are also given in Constantin [3] and Lipovan [5].

We note here that, although the conclusions given therein are correct, the derivation of them
has a small defect. Actually, since functiéhdepends on both variabless, the integral in-
equality given in the lemma of [2] is not applicable. However, using our Theprem 2.1 and by
following the same argument as used ih [2] these conclusions can be reproved very easily.

Now we consider the discrete analogue of equafior] (4.1) without a differentiability require-
ment on the functior® :

(4.2) u*(n) = L+ Z P(n,s)u(s), n eN,

where L > 0 is a constanty, P € K(N,R,) with P nondecreasing. The unique positive
solution to equatiorf (4]2) can be obtained by successive substitution. For instance, by letting
n =0, 1,2 successively i (4]2), we obtain

w(0) = VL, u(l)=+/L+ P1)u(0), u(2)=+/L+ P1)u(l)+ P(2)u(0).
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An application of Corollary 213 withf(n, s) = g(n,s) = 0,h(n,s) = P(n — s) to (4.1)
yields an upper bound an(n) of the form

u(n) < ﬁ#—iP(n—s), n €N.
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