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1. I NTRODUCTION

L. Ou-Iang [9] studied the boundedness of solutions for some nonautonomuous second order
linear differential equations by means of a nonlinear integral inequality. This integral inequal-
ity had been frequently used by authors to obtain global existence, uniqueness and stability
properties of various nonlinear differential equations. A number of generalizations and discrete
analogues of this inequality and their new applications have appeared in the literature. See, for
example, B.G. Pachpatte ([10] – [12]) and the present author [13][14] and the references given
therein.

In 1996, A. Constantin [2] established the following interesting alternative result for a gener-
alized Ou-Iang type integral inequality given by B. G. Pachpatte [12]:

Theorem A. Let T > 0, k ≥ 0, and u, f, g ∈ C ([0, T ] ,R+) , R+ = [0,∞). Further, let
w ∈ C(R+, R+) be nondecreasing,w(r) > 0 for r > 0 and

∫∞
r0

ds
w(s)

= ∞ hold for some
numberr0 > 0. Then the integral inequality

u2(t) ≤ k2 + 2

∫ t

0

{
f(s)u(s)

[
u(s) +

∫ s

0

g(ξ)w (u(ξ)) dξ

]}
ds, t ∈ [0, T ]
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implies

u(t) ≤ k +

∫ t

0

f(s)G−1

{
G (k) +

∫ s

0

[f(ξ) + g(ξ)] dξ

}
ds, t ∈ [0, T ],

whereG−1 denotes the inverse function ofG and

G(r) :=

∫ r

r0

ds

w(s) + s
, r ≥ r0, 1 > r0 > 0.

Applying the above result and a topological transversality theorem, A. Granas [4] proved a
nonlocal existence theorem for a certain class of initial value problems of nonlinear integrod-
ifferential equations. We refer to D. O’Regan and M. Meehan [6] for more existence results
obtained by means of topological transversality theorems.

The purpose of the present paper is to obtain a new generalization of Constantin’s inequality
and its discrete analogue. The integral inequality obtained can be used to study some more
general initial value problems by following the same argument as that applied in Constantin [2].
A discrete analogue of W.Okrasinsky’s mathematical model for the infiltration phenomena of a
fluid (see [7] and [8]) is discussed to convey the usefulness of the discrete inequality given in
the paper.

2. NONLINEAR I NTEGRAL I NEQUALITY

Theorem 2.1.Letu, c ∈ C(R+, R+) with c nondecreasing, andϕ ∈ C1(R+, R+) with ϕ′ non-
negative and nondecreasing. Letf(t, ξ), g(t, ξ), h(t, ξ) ∈ C(R+ × R+, R+) be nondecreasing
in t for everyξ fixed. Further, letw ∈ C(R+, R+) be nondecreasing,w(r) > 0 for r > 0 and∫∞

r0

ds
w(s)

= ∞ hold for some numberr0 > 0. Then the integral inequality

(2.1) ϕ [u(t)] ≤ c(t) +

∫ t

0

{
f(t, s)ϕ′ [u(s)]

×
[
u(s) +

∫ s

0

g(s, ξ)w (u(ξ)) dξ

]
+ h(t, s)ϕ′ [u(s)]

}
ds, t ∈ [0, T ],

implies

(2.2) u(t) ≤ K(t) +

∫ t

0

f(t, s)

×G−1

{
G(K(t)) +

∫ s

0

[f(t, ξ) + g(t, ξ)] dξ

}
ds, t ∈ [0, T ],

herein

(2.3) K(t) = ϕ−1 [c(t)] +

∫ t

0

h(t, s)ds,

G−1, ϕ−1denote the inverse function ofG, ϕ,respectively, and

(2.4) G(r) :=

∫ r

r0

ds

w(s) + s
, r ≥ r0, 1 > r0 > 0.

Note that, by Constatin [1] the above functionG is positive, strictly increasing and satisfies
the conditionG(r) →∞ as r →∞.

J. Inequal. Pure and Appl. Math., 8(2) (2007), Art. 57, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INTEGRAL INEQUALITY AND ITS DISCRETEANALOGUE 3

Proof. Letting t = 0 in (2.1), we observe that inequality (2.2) holds trivially fort = 0. Fixing
an arbitrary numbert0 ∈ (0, T ),we define on[0, t0] a positive functionz(t) by

(2.5) z(t) = c(t0) + ε +

∫ t

0

{
f(t0, s)ϕ

′ [u(s)]

×
[
u(s) +

∫ s

0

g(t0, ξ)w (u(ξ)) dξ

]
+ h(t0, s)ϕ

′ [u(s)]

}
ds,

whereε > 0 is an arbitrary small constant. By inequality (2.1) we have

(2.6) u(t) ≤ ϕ−1 [z(t)] , t ∈ [0, t0].

From (2.5) we derive by differentiation

z′(t) = f(t0, t)ϕ
′ [u(t)]

[
u(t) +

∫ t

0

g(t0, ξ)w [u(ξ)] dξ

]
+ h(t0, t)ϕ

′ [u(t)]

≤ ϕ′
[
ϕ−1 [z(t)]

]{
f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
+ h(t0, t)

}
,

for t ∈ [0, t0], sinceϕ′ is nonnegative and nondecreasing. Hence we obtain

d

dt
ϕ−1 [z(t)] =

z′(t)

ϕ′ [ϕ−1[z(t)]]

≤ f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
+ h(t0, t), t ∈ [0, t0],

Integrating both sides of the last relation from 0 tot, we get

ϕ−1[z(t)] ≤ ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds

+

∫ t

0

f(t0, s)

[
ϕ−1[z(s)] +

∫ s

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
ds, t ∈ [0, t0].

Define a functionv(t), 0 ≤ t ≤ t0, by the right member of the last relation, we have

(2.7) ϕ−1[z(t)] ≤ v(t), t ∈ [0, t0],

where

(2.8) v(0) = ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds.

By differentiation we derive

v′(t) = f(t0, t)

[
ϕ−1[z(t)] +

∫ t

0

g(t0, ξ)w
(
ϕ−1[z(ξ)]

)
dξ

]
(2.9)

≤ f(t0, t)

[
v(t) +

∫ t

0

g(t0, ξ)w (v(ξ)) dξ

]
= f(t0, t)Ω(t), t ∈ [0, t0].

where

Ω(t) =

[
v(t) +

∫ t

0

g(t0, ξ)w (v(ξ)) dξ

]
.

Hence we havev(t) ≤ Ω(t),

(2.10) Ω(0) = v(0) = ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds,
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and

Ω′(t) = v′(t) + g(t0, t)w (v(t))

≤ f(t0, t)Ω(t) + g(t0, t)w (Ω(t)) , t ∈ [0, t0].

BecauseΩ(t), and hencew (Ω(t)), is positive on[0, t0], the last inequality can be rewritten as

(2.11)
Ω′(t)

Ω(t) + w (Ω(t))
≤ f(t0, t) + g(t0, t), t ∈ [0, t0].

Integrating both sides of the last relation from 0 tot and in view of the definition ofG, we
obtain

G [Ω(t)]−G [Ω(0)] ≤
∫ t

0

[f(t0, s) + g(t0, s)] ds, t ∈ [0, t0].

By (2.10) and the fact thatG(r) →∞as r →∞,the last relation yields

Ω(t) ≤ G−1

{
G

[
ϕ−1[z(0)] +

∫ t0

0

h(t0, s)ds

]
+

∫ t

0

[f(t0, s) + g(t0, s)] ds

}
, t ∈ [0, t0].

Substituting the last relation into (2.9), then integrating from 0 tot, we derive fort ∈ [0, t0] that

u(t) ≤ ϕ−1 [c(t0) + ε] +

∫ t0

0

h(t0, s)ds

+

∫ t

0

f(t0, s)G
−1

{
G

[
ϕ−1[c(t0) + ε] +

∫ t0

0

h(t0, s)ds

]
+

∫ s

0

[f(t0, ξ) + g(t0, ξ)]dξ

}
ds,

where we used the relationu(t) ≤ ϕ−1[z(t)] ≤ v(t) ≤ Ω(t).
Takingt = t0 and lettingε → 0, from the last relation we have

u(t0) ≤ K(t0) +

∫ t0

0

f(t0, s)G
−1

{
G [K(t0)] +

∫ s

0

[f(t0, ξ) + g(t0, ξ)] dξ

}
ds,

whereK(t) is defined by (2.3). This means that the desired inequality (2.2) is valid whent = t0.
Since the choice oft0 from (0, T ] is arbitrary, the proof of Theorem 2.1 is complete. �

If w(r) = r holds in Theorem 2.1, the inequality (2.11) can be replaced by the following
sharper relation

Ω′(t)

Ω(t)
≤ f(t0, t) + g(t0, t), t ∈ [0, t0],

and functionsG,G−1 can be replaced byH(r) = ln (r/r0), H−1(η) = r0e
η, respectively. Hence

we derive the following:

Corollary 2.2. Under the conditions of Theorem 2.1, the integral inequality

(2.12) ϕ[u(t)] ≤ c(t) +

∫ t

0

{
f(t, s)ϕ′[u(s)]

×
[
u(s) +

∫ s

0

g(s, ξ)u(ξ)dξ

]
+ h(t, s)ϕ′[u(s)]

}
ds, t ∈ [0, T ],
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implies

(2.13) u(t) ≤
(

ϕ−1[c(t)] +

∫ t

0

h(t, s)ds

)
×

(
1 +

∫ t

0

f(t, s)

{
exp

∫ s

0

[f(t, ξ) + g(t, ξ)] dξ

}
ds

)
, t ∈ [0, T ].

If ϕ(η) = ηp, p > 1, c(t) = kp ≥ 0 andf(t, s), g(t, s), h(t, s) do not depend on the variable
t, by Theorem 2.1 we have the following:

Corollary 2.3. Let p > 1, k ≥ 0 be constants andu, f, g ∈ C ([0, T ],R+) . Then the integral
inequality

up(t) ≤ kp + p

∫ t

0

{
f(s)up−1(s)

[
u(s) +

∫ s

0

g(ξ)w (u(ξ)) dξ

]}
ds, t ∈ [0, T ]

implies

u(t) ≤ k +

∫ t

0

f(s)G−1

{
G (k) +

∫ s

0

[f(ξ) + g(ξ)] dξ

}
ds, t ∈ [0, T ].

Remark 2.4. Clearly, Constantin’s Theorem A is the special casep = 2 of the last result.

3. DISCRETE ANALOGUE

In this section we will establish a discrete analogue of Theorem 2.1. Denote byN the set of
nonnegative integers and letN0 = {n ∈N: n ≤ M} for some natural numberM . For simplicity,
we denote byK(P, Q) the class of functions defined on setP with range in setQ. For a function
u ∈ K(N, R), R = (−∞,∞), we define the forward difference operator∆ by ∆u(n) =
u(n + 1)− u(n).

As usual, we suppose that the empty sum and empty product are zero and one, respectively .
For instance,

−1∑
s=0

p(s) = 0 and
−1∏
s=0

p(s) = 1

hold for any functionp(n), n ∈ N.

Theorem 3.1. Let the functionsw,ϕ be as defined in Theorem 2.1 andu, c ∈ K(N, R+) with
c(n) nondecreasing. Further, letf(n, s), g(n, s), h(n, s) ∈ K(N × N, R+) be nondecreasing
with respect ton for everys fixed. Then the discrete inequality

(3.1) ϕ[u(n)] ≤ c(n) +
n−1∑
s=0

{
f(n, s)ϕ′[u(s)]

×

[
u(s) +

s−1∑
ξ=0

g(s, ξ)w (u(ξ))

]
+ h(n, s)ϕ′[u(s)]

}
, n ∈ N0,

implies

(3.2) u(n) ≤ L(n) +
n−1∑
s=0

f(n, s)G−1

{
G[L(n)] +

s−1∑
ξ=0

[f(n, ξ) + g(n, ξ)]

}
, n ∈ N0,
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whereG, G−1 are as defined in Theorem 2.1 and

(3.3) L(n) := ϕ−1[c(n)] +
n−1∑
s=0

h(n, s).

Proof. Fixing an arbitrary positive integerm ∈ (0, M), we define on the setJ := { 0, 1, . . . ,m}
a positive functionz(n) ∈ K(J, (0,∞)) by

z(n) = c(m) + ε +
n−1∑
s=0

{
f(m, s)ϕ′[u(s)]

×

[
u(s) +

s−1∑
ξ=0

g(m, ξ)w (u(ξ))

]
+ h(m, s)ϕ′[u(s)]

}
,

whereε is an arbitrary positive constant, thenz(0) = c(m) + ε > 0 and by (3.1) we have

(3.4) u(n) ≤ ϕ−1[z(n)], n ∈ J.

Using the last relation, we derive

∆z(n) = f(m, n)ϕ′[u(n)]

[
u(n) +

n−1∑
s=0

g(m, s)w (u(s))

]
+ h(m, n)ϕ′[u(n)]

≤ ϕ′
[
ϕ−1[z(n)]

]
×

{
f(m, n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
+ h(m, n)

}
, n ∈ J.

By the mean value theorem and the last relation, we obtain

∆ϕ−1[z(n)] ≤ ∆z(n)

ϕ′ [ϕ−1[z(n)]]

≤ f(m, n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
+ h(m, n), n ∈ J,

sinceϕ′−1andz(n) are nondecreasing. Substitutingn = ξ in the last relation and then summing
overξ = 0, 1, 2, . . . , n− 1, we obtain

ϕ−1[z(n)] ≤ ϕ−1[z(0)] +
m−1∑
ξ=0

h(m, ξ)

+
n−1∑
ξ=0

f(m, ξ)

[
ϕ−1[z(ξ)] +

ξ−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]
,

wheren ∈ J , sinceh(n, s) is nonnegative andm ≥ n holds. Now, defining byv(n) the right
member of the last relation, we have

v(0) = ϕ−1[z(0)] +
m−1∑
ξ=0

h(m, ξ) = ϕ−1[c(m) + ε] +
m−1∑
ξ=0

h(m, ξ)

and

(3.5) ϕ−1[z(n)] ≤ v(n), n ∈ J.
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By (3.5) we easily derive

∆v(n) = f(m,n)

[
ϕ−1[z(n)] +

n−1∑
s=0

g(m, s)w
(
ϕ−1[z(s)]

)]

≤ f(m, n)

[
v(n) +

n−1∑
s=0

g(m, s)w (v(s))

]
, n ∈ J,

or

(3.6) ∆v(n) ≤ f(m,n)y(n), n ∈ J,

where

y(n) := v(n) +
n−1∑
s=0

g(m, s)w (v(s)), n ∈ J.

Clearly,y(0) = v(0) holds and by (3.6) we have

∆y(n) ≤ ∆v(n) + g(m, n)w (v(n)) ≤ [f(m, n) + g(m, n)] [y(n) + w (y(n))] ,

i.e.,
∆y(n)

y(n) + w (y(n))
≤ f(m, n) + g(m, n), n ∈ J.

Becausey(n), w(r) are positive and nondecreasing, we have∫ y(n)

y(0)

ds

s + w(s)
≤

n−1∑
s=0

∆y(s)

y(s) + w(y(s))
≤

n−1∑
s=0

[f(m, s) + g(m, s)],

or

G[y(n)]−G[y(0)] ≤
n−1∑
s=0

[f(m, s) + g(m, s)], n ∈ J.

SinceG(r) →∞as r →∞, the last relation yields

y(n) ≤ G−1

{
G

[
ϕ−1[c(m) + ε] +

m−1∑
ξ=0

h(m, ξ)

]
+

n−1∑
s=0

[f(m, s) + g(m, s)]

}
, n ∈ J.

Substituting this relation into (3.6), settingn = s and then summing overs = 0, 1, . . . , n − 1,
we have

v(n) ≤ v(0) +
n−1∑
s=0

f(m, s)

×G−1

{
G

[
ϕ−1[c(m) + ε] +

m−1∑
ξ=0

h(m, ξ)

]
+

s−1∑
ξ=0

[f(m, ξ) + g(m, ξ)]

}
, n ∈ J.

Becauseu(n) ≤ ϕ−1[z(n)] ≤ v(n), n ∈ J, by lettingn = m andε → 0 in the last relation, we
obtain

u(m) ≤ L(m) +
m−1∑
s=0

f(m, s)G−1

{
G[L(m)] +

s−1∑
ξ=0

[f(m, ξ) + g(m, ξ)]

}
.

This means that the desired inequality (3.2) is valid whenn = m. Sincem ∈ (0, M) is chosen
arbitrarily and by (3.1), inequality (3.2) holds also forn = 0. Thus the proof of Theorem 3.1 is
complete. �
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The following result is a special case of Theorem 3.1 whenϕ(η) = ηp, w(r) = r:

Corollary 3.2. Under the conditions of Theorem 3.1,the discrete inequality

(3.7) up(n) ≤ cp(n)

+ p

n−1∑
s=0

{
f(n, s)u(s)

[
u(s) +

s−1∑
ξ=0

g(s, ξ)u(ξ)

]
+ h(n, s)u(s)

}
, n ∈ N0,

wherep > 1 is a real number, implies that

(3.8) u(n) ≤

[
c(n) +

n−1∑
s=0

h(n, s)

]

×

{
1 +

n−1∑
s=0

f(n, s) exp
s−1∑
ξ=0

[f(n, ξ) + g(n, ξ)]

}
, n ∈ N0.

Note that, the particular case of Theorem 3.1 whenϕ(η) = η2, c(n) ≡ k2 > 0 and the
functionsf(n, s), g(n, s), h(n, s) are independent of the variablen, yields a discrete analogue
of the Constantin integral inequality.

4. DISCRETE M ODEL OF I NFILTRATION

The mathematical model of the infiltration phenomena of a fluid due to Okrasinsky [7] was
studied in [2] (see, also [8]):

(4.1) u2(t) = L +

∫ t

0

P (t− s)u(s)ds, t ∈R+,

whereL > 0 is a constant,P ∈ C(R+, R+) andu denotes the height of the percolating fluid
above the horizontal impervious base, multiplied by a positive number. This model describes
the infiltration phenomena of a fluid from a cylindrical reservoir into an isotropic homogeneous
porous medium. Under the condition “P is differentiable and nondecreasing”, Constantin ob-
tained the existence and uniqueness of a solutionu ∈ C1(R+, (0,∞)) of equation (4.1). Some
known results for equation (4.1) are also given in Constantin [3] and Lipovan [5].

We note here that, although the conclusions given therein are correct, the derivation of them
has a small defect. Actually, since functionP depends on both variablest, s, the integral in-
equality given in the lemma of [2] is not applicable. However, using our Theorem 2.1 and by
following the same argument as used in [2] these conclusions can be reproved very easily.

Now we consider the discrete analogue of equation (4.1) without a differentiability require-
ment on the functionP :

(4.2) u2(n) = L +
n−1∑
s=0

P (n, s)u(s), n ∈N,

whereL > 0 is a constant,u, P ∈ K(N, R+) with P nondecreasing. The unique positive
solution to equation (4.2) can be obtained by successive substitution. For instance, by letting
n = 0, 1, 2 successively in (4.2), we obtain

u(0) =
√

L , u(1) =
√

L + P (1)u(0) , u(2) =
√

L + P (1)u(1) + P (2)u(0).
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An application of Corollary 2.3 withf(n, s) = g(n, s) ≡ 0, h(n, s) = P (n − s) to (4.1)
yields an upper bound onu(n) of the form

u(n) ≤
√

L +
n−1∑
s=0

P (n− s), n ∈N.
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