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ABSTRACT. In this paper we present an integral inequality and show how it can be used to
study certain differential equations. Namely, we will see how to establish (global) existence
results and determine the decay rates of solutions to abstract semilinear problems, reaction diffu-
sion systems with time dependent coefficients and fractional differential problems. A nonlinear
singular version of the Gronwall inequality is also presented.
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1. INTRODUCTION AND PRELIMINARIES

Our purpose here is to survey the recent works of the present author together with some of
his collaborators on the role of an integral inequality in developing certain results in the prior
literature.

In this section we present the integral inequality in question together with its prooflfrom [21].
Then, we prepare some material which will be needed later. Since we will be dealing with
different results and applications published in different papers, it will also be our task here in
this section to unify the notation.

We denote byX := L?(Q),p > 1andW™? (Q), p > 1, m > 1, whereQ is a bounded
domain inR™, the usual Lebesgue space and Sobolev space, respectively. The’;%r(eﬁ)s
v > 0, is the Banach space 6f]-times continuously differentiable functionsihwhose[v|-th
order derivatives are Holder continuous with exponent [v], so thatC? (Q) = C () and
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2 NASSEREDDINE TATAR

ot (Q) are the Banach spaces of continuous and continuously differentiable functiéhs in
respectively.

We designate by- A a sectorial operator (seel [9]) wilkeo (A) > b > 0 whereReo (A)
denotes the real part of the spectrumdofWe may define the fractional operatofs, 0 < a <
1 in the usual way oD (A*) = X“. The spaceX* endowed with the normiz||, = ||A®«|| is
a Banach space. The operated generates an analytic semigrofyp 4 },5¢ in X.

Our key inequality in this paper is the following (seel[21]).

Lemmal.l.If A\, v, w > 0, then for anyt > 0 we have
t
tl—l// (t o S)V—ls)\—le—wsds < 07
0
where(' is a positive constant independenttofn fact,
C =max {1,277} T(A) (1 + A /v)w™™.

Proof. Let /() denote the left-hand side of the relation in the lemma. By a change of variables
we find

1
[(t) — t)\/ (1 o g)uflg)\flefwtﬁdf.
0
Notice that,
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Therefore,
I(t) < max(1, 2T (N (1 4+ N/v)w™.

We will also need the lemmas below (seg [9] for the proofs)
Lemma 1.2.1f 0 < o < 1, thenD (4*) C C (Q) for 0 < v < 2 — i
Lemma1.3.1f 0 < a < 1, then||Aae—“‘Hp <t e >0
for some positive constant.
Lemma1l.4.Leta € [0,1) and 5 € R. There exists a positive constafit= C(«, ) such that

Cel, if >0
t
/ s7%Mds < { C(t+1), if3=0
0
C, if 3<0.

Lemma 1.5. Let a(t), b(t), K(t), ¥ (t) be nonnegative, continuous functions on the interval
I=(0,T)(0<T<o0),®:(0,00) — R be a continuous, nonnegative and nondecreasing
function,®(0) = 0, ®(u) > 0 foru > 0 and letA(t) = maxo<s<¢ a(s), B(t) = maxo<s<; b($).
Assume that .
P(t) < alt) + b(t)/ K(s)®(y(s))ds, tel.

0

Then .
vt < W [waw) + 80) [ K], te 0.1,
0

whereW (v) = [ %, v > vy > 0, Wl is the inverse of¥/ andT} > 0 is such that

W(A®t) + B(t) [, K(s)ds € D(W~") forall t € (0,T}).
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This result may be found in [1] for instance.

We caution the reader that due to space considerations we are unable to discuss all the prior
literature on the different problems presented in this paper. Our main objective is to emphasize
and highlight the role played by the integral inequality (Lenimé 1.1) in improving and extending
previous results for a variety of problems.

2. ABSTRACT SEMILINEAR PROBLEMS

Let us consider the problem
u + Au= f(t,u), ue X
2.1) t
u(0) = up € X,
whereA is a sectorial operator witRe o(A) > b > 0. The functionf(t, «) satisfies
(2.2) L&)l < t*n(@) [[A%ul[™,  m>1, k>0,

wheren(t) is a nonnegative continuous function. Solutions of the differential probler (2.1)
coincide with solutions of the integral equation

t
(2.3) u(t) = e ug —i—/ e A9 f(s u(s))ds, 0<t<T
0
with continuousu : (0,7) — X andf : t — f(t,u(t)).

In [19], Medved’ considered this problem and proved a global existence result. He also
proved thatim,_. ||u(t)||, = 0 provided that

t

2.4) P / ()T aerali=mbmels g

0
is bounded ort0, co) for some positive real numbetsq andr. This has been established for a
certain range of values far. In fact, the decay rate there was found to be exponential. The idea
was to take the-norm .|| , of both sides of the equatioh (2.3) and use the hypothesis (2.2) and
Lemma 1.8 to obtain

t

U(t) < d||uol + dta/ (t — )~ @bImmIs grmmap () (5)™ds
0

for a certain function(¢). Medved’ then appealed to a nonlinear singular version of the Gron-

wall inequality which he proved earlier in [18]. This latter result gives bounds for solutions of
inequalities of the type

(2.5) Y(t) < alt)+ b(t)/o (t —s) 1 F(s)y™(s)ds, B>0,v>0

wherem > 1 (the linear caseng = 1) can be found, for instance, in/[9]). Medved’ used the
decomposition

(2.6) /0 (= )P L R (5) D (s)Mds

t 3 t
< (/ (t — 3)2(ﬂ—1)62asd3> (/ SQ(V_I)F(S)%_Q“\IJ(s)des)
0 0
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4 NASSEREDDINE TATAR

and Lemmd 1]5. In[13], Kirane and Tatar improved considerably the latter and the former
results by using the above inequality in Lemimg 1.1 and the decomposition

2.7) /0 (= )P L R (5) D (s)Mds

¢ 5ot 2
< </ (t — 8)2(3_1)52(7_1)6_2%3) (/ F(S)QGQS\II(S)%”ds)
0 0

instead of the decompositiop (2.6). The assumpfion (2.4) has been relaxed and the range of
values ofa has been enlarged. In fact, the gap which was in [19] was filled. We established an
exponential decay and a power type decay for those valuesadfich were not considered in

[19]. The estimates are proved in the sp@ced®), then using the Lemnia .2 we pass to the

spaceC”(£2), 0 < p < 2a — 7.
Then, in the same paper [13], these results were extended to the case of abstract semilinear
functionaldifferential problems of the form

Dt Au= f(t,u(t+0)), ue X, §€[-r,0
{ u(0) =up € X
andintegro-differentialproblems of the form
b — [Pk(t — s)Au(s)ds + f(t,u), u € X
{ u(0) = up € X.

3. SOME FURTHER EXTENSIONS
The results stated in the previous section were extended to other differential problems with
different nonlinearities. 1N [26], the present author considered the following abstract problem
% + Au=F (t,u(t), f;l(t, s)f(s,u(s)ds> ,teI=[0,T]
u(0) = up € X,
wheref : I x X — X andF : [ x X x X — X satisfy
(H1) There exist continuous functiogs: I — [0,00) andq : I — [0, oo) such that
LF(E )l < e®O(lull), we X, tel
for some continuous nondecreasing function0, co) — [0, co) satisfying
0(a(t)* < a(t)f(o(t)*).
(H2) There exists a continuous functign I — [0, co) such that
1w, )| < (@) (lull + [lol]) ;- w,ve X, tel

After proving quite a general well-posedness result, we established an exponential decay
result for singular kernels of the form

I(t,s) =1(t—s)=(t—s)Pe 9 3€(0,1), y>0

and ford of polynomial typef(r) := r™. Observe here that the nonlinearity we are dealing
with is somewhat different from the previous one. If we take= L? (2), p > 1, then it is the
LP-norm we are considering here instead of thenorm, that is,

1F(Eu)ll, < tx@) llully, >0
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This improves several results in the prior literaturerfor= 1 and time independent (or bounded
»(t)) nonlinearities.
Then, we can cite the work in [17] dealing with the integro-differential problem

+Au— +f0 (t,s,u fo (s, 7, u(T )dT, tel=1[0,T]

uw(0) =up € X

and where again an exponential decay result was proved using the integral inequality in Lemma
[1.7. The global existence is proved, in a more general setting in [16] for a problem with non-
local conditions of the form

w(0) + h(ty, ..., tp, u) = ug
and with delays in the arguments of the solutioiNamely, the problem treated there was
du

=F <t,u (o1()), f;g (t,s,u(02(s)), [ K (s, 7, u(o3(7))) dr) ds)
uw(0) + h(ty, ...ty u(-)) = ug € X.

4. THE HEAT EQUATION

In this part of the paper we consider the foIIowing integral inequality

(4.2) o(t,z) < k(t, z) +ltx// .9) ~dyds, x€Q,t>0
(t —s) ﬂ \x y|"
where(2 is a domain inR™ (n > 1) (bounded or possibly equal #®"), the functionsk(¢, x),
I(t,z) and F'(t) are given positive continuous functionstinThe constant < a < n, 0 <
£ < 1andm > 1 will be precised below.
The interest in this inequality which is singular in both time and space is motivated by the
semilinear parabolic problem (in caQe= R")

w(t, x) = Au(t,z) + u™(t,xz), e R", t >0, m > 1
u(0,z) = up(x), x € R"™

This problem (and also on a bounded domain) has been extensively studied by many researchers,
see for instance the survey paper by Levine [15]. Several results on global existence, blow up
in finite time and asymptotic behavior have been found. These results depend in general on
the dimension of the space the exponentn and the initial data,(z). In particular, global
existence has been proved for sufficiently small initial data (together with an assumption on
andm). Using the fundamental solutiaki(¢, =) of the heat equation we can write this problem

in the integral form

(4.2)

(4.3) u(t,z) = /n G(t,x — y)uo(y)dy + /0 /n Gt —s,x —y)u™(s,y)dyds.

Recalling the Solonnikov estimates [25]
C

y)| < ot
(1t =" + |z = ])

it is clear that we can end up with a particular form of the inequdlity (4.1).

|G(t — s,z
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6 NASSEREDDINE TATAR

Notice here that the integral inequalify (4.1) is not merely an extension of the singular nonlin-
ear Gronwall inequality| (2]5) discussed above to the case of two variables. This case has been
treated by Medved’ in [20]. Namely, the author considered an inequality of the form

u(z,y) < alx,y) + /Ox /Oy(:c —8) Ny — )P F (s, t)w(u(s, t))dsdt,

wherew : R™ — R satisfies
e ww)]’ < R(t)w(e "u?)
for someq > 0 and R(t) a continuous nonnegative function. His results, in turn, may be
improved by applying a similar decomposition [fo {2.7) twice.
The inequality [(4.1) is different and the technique previously mentioned is not applicable

in this situation. In|[[2F7], we have been forced to combine this technique with the Hardy-
Littlewood-Sobolev inequality.

Lemma 4.1 (see [11, p. 117])Letu € LP(R") (p > 1),0 < vy < nand? > 1 - %,
then(1/|x|") * u € L%(R™) with % =14 % — 1. Also the mapping from € L?(R™) into
(1/|x|") xuw € LI(R™) is continuous.

We found sufficient conditions involving sonié€-norms ofl andk with £ yielding existence
and estimations of solutions on some intervals.

Theorem 4.2. Assume that the constanis 8 andm are such thab < a < gn,0 < § < 1
andm > 1.

() If Q =R, then for anyr satisfyingmax (@, %) <r < ™% we have

lo(t, )|, < Uprp(t)
with

m(p—1)

Upﬂ",p@) =2 K<t)5

t (1—7;;1)7‘
X {1 — 9mP=D(pm — 1)Cf_1C§K(t)m_lL(t)e£pt/ e_apSFp(s)ds] :
0
where K (t) = maxo<s< [|k(s,)|l}, L(t) = maxo<s<: [[I(s, )|}, p = r/m andp =
L)n for somes > 0. Here (', and C, are the best constants in Leml@ 1.4 and

ar—(m—1
Lemmd 4.]1, respectively. The estimation is valid as long as

¢
(4.4) K(t)m_lL(t)eEPt/ e P FP(s)ds < 1/2™P Y (m — 1)CP'CY.
0

(i) If Q is bounded, then
le(t, )7 < Uparp(t)
for anyr < r wherep, r and p are as in (i). If moreovery < n/(nf — «) (but not
necessarily: > (m — 1)n/a), thatis, % <r < min (%, w%) then this estimation
holds for any; < p < ;- provided thay > &

n—(np—a)r’

From (4.4) it can be seen that the growth#6ft) may be “controlled” byZ(¢) andF'(¢). That
is, if K(t) is large then we can assunigt) and/or F'(t) small enough to get existence on an
arbitrarily large interval of time. In fact, for the case of the semilinear parabolic (heat) problem
(4.2), itis known that

/n Gtz — y)uo(y)dy < ug' (z)
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whereu}! (z) is themaximalfunction defined by

1
(@) = sup o /R o) dy.

Thesup is taken over all cubeB centered ai: and having their edges parallel to the coordinate
axes. Moreover, thé?-norm ofu) is less than a constant times thenorm ofw,. This means
that if uy € LP(R™), we will be left with a condition involving:}! (x) only (see[(4.8)).

Moreover, it is proved in [27] that

Corollary 4.3. Suppose that the hypotheses of Thedrein 4.2 hold. Assume furthg(thgt
and(t,z) decay exponentially in time, that igt, z) < e *k(z) andi(t,z) < e "i(z) for
some positive constantsand|. Thenp(t, x) is also exponentially decaying to zeroi.e.,

lo(t,z)]l, < Cse™, t>0
for some positive constant% and . provided that

S met g > 1 -
&) HZ(I)HP/O F(s)ds < 5o (m = 1)CY ey,

where () is the best constant in Lemrpal.4 and the other constants are as in (i) and (ii) of
Theoreni 412.

Finally, for the nonlinear singular inequality

o(t,x) < k(t, z) —I—lta:// "(s:y) —dyds, xe€Q,t>0
t—315|m y|"

we can prove an interesting result yielding power type decay without imposing a power type
decay fori(t, z).

Corollary 4.4. Suppose that the hypotheses of Thedrein 4.2 hold. Assume furthieftthat<
t~*k(x) and1+ 6p' —mp’ min{k, 1 — 3} > 0. Then anyp(t, z) satisfying the above inequality
is also polynomially decaying to zero

lo(t, z)||, < Cst™,  Cs,w>0
provided that

t
sz(l)H;nil L(t)/ eapSFp<S)dS < m(p=1) (m _ 1)0%3—105
0
where(Cj is the best constant in Leminall.1.

5. REACTION DIFFUSION SYSTEMS

In this section we are interested in systems of reaction-diffusion equations of the form

(u, = diAu — 1 (t) fr{(w)w? — ro(t) fo(u)2", reQ, t>0
wy = doAw + 11 (t) fr(u)w? + ro(t) fo(u)2" —aw, =€ Q, t>0
v = diAv — r3(t) f3(v)wT — ry(t) fa(v)2?, reQ, t>0
2z = diAz 4+ r3(t) fs(V)w” + ry(t) fa(v)2P —az, €, t>0
Qu—guw_fv— 8, red, t>0

L (u,w,v,2)(z,0) = (ug, wo, vo, 20)(), r €
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where( is a bounded region iiR™ with smooth boundary(?, the diffusion coefficientsl;,
1 =1,2,3,4 anda are positive constants and the exponents, o, p are greater than one. Itis
also assumed that
() llwolly , llwolly s flvolly , [[20ll, > 0;
(i) fi,i=1,2,3,4 are nonnegative’' —functions on0, oo);
(i) f:(0)=0,andf;(y) > 0ifandonly ify > 0,7 =1,2,3,4;
(iv) 1<n<pandl <o <~.
There are very few papers dealing with systems involving time-dependent nonlinearities and
probably the only paper which treated the question of asymptotic behavior for reaction diffusion
systems is the one by Kahane|[12]. The author considered the system

—uy + Lu = f(z,t,u,v), inQx(0,00)
—vp + Mv = g(z,t,u,v), InQ x(0,00)

with boundary conditions of Robin type and whereand M are uniformly elliptic operators.
He proved that the solution converges to the stationary state provided that

fz, t,u,v) — f(z,u,v)
and

g(‘%.? t? u? U) - g(x7 /U/, U)
uniformly in Q and (u,v) in any bounded subset of the first quadranfRhand the matrix
formed by the partial derivativeg,, f,, 3. andg, satisfies a column diagonal dominance type
condition. This cannot be applied in our present case as we are going to consider unbounded
coefficients

ri(t) == thg(t), ki >0,i=1,234
whereg;(t) are continuous and square integrablg@rmo).
By standard arguments it can be seen that the operators in the system are sectorial and that

they generate analytic semigroups/if((2). Then, these semigroups are shown tekponen-
tially stablein the sense of Lemnja 1.3. Also, using the existing methods (fixed points theorems,
a priori boundedness, maximum principle, Lyapunov functionals), one can easily show that for
nonnegative continuous (d) initial data there exists a unique nonnegative global solution
bounded pointwise by a certain positive constant (equéktd_ and| vl in case ofu and
v, respectively). Making use of this and the fact thifatire bounded, it is shown in [14] that
solutions of the weak formulation

t
w(t) = e Prag + / e~ (t=")By {ri(7) fi(w)w? + ro(7) fo(u) 2"} dr
0
and .
2(t) = 1z + / eI [y (7) fy(0)u” + 74(7) ful0) 2"} dr
0
whereB, andG), defined by

D(B,) = D(G,) = {y c W*(Q) : 9y log = 0}

ov
B,y := —(d2A —a)y
Gpy == —(dsA —a)y

are exponentially decaying tb Then, we prove that the componenteindv converge expo-
nentially tou., andv,, (the equilibrium state), respectively. Here again, our integral inequality
in Lemmg 1.1 plays an important role in the proof.
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6. A CONVECTION PROBLEM

Another problem where we can see the efficiency of the integral inequality of Lémima 1.1 is
the following initial value problem which appears in thermal convection flow

ov+@w-Viv=~Av—19g4+h—-Vm, z€Q, t>0,
V-v=0, reQ, t>0,
oT+ (- V)T=A1, 2€Q,t>0,
v(z,t) =0, 7(x,t) =&(x,t), xel,t>0,
v(x,0) = vo(z), 7(x,0) = 10(x), x€Q,

(6.1)

where(2 is a bounded region iR (N > 2) with smooth boundary.

This problem has been studied by Hishida in/ [10]. A quite general well-posedness result has
been established there. However, the global existence result and the exponential decay were
proved only for sufficiently small initial data and fersatisfying the condition

Vol = O(e™") withw > 0
where the functiom = ¢(z, t) is solution of
0o = Ao, reQ t>0,
oz, t) =&(x,t), z €T, t>0,
¢(x,0) = ¢o(z), 7€Q
and¢y = ¢o(x) is defined by
{ Ay =0, in Q

¢o(z) = &(2,0), onT.

In [5], the present author with Furati and Kirane improved these results in at least two directions.
First, the class of functions is enlarged to functions satisfying

Vo, = O(e™") with w > 0
and further to functions such that
IVl = O(t™*) with w > 0.

Next, combining the Gronwall-Bihari inequality (Lemina|1.5) and the integral inequality (Lemma
[1.7), we were able to considkarge initial data. To this end one has to reduce problem| (6.1) to
an abstract Cauchy problem of the form

Dt Ayp=F(v,0), t>0,v(0)
@ 1 B,H = G(v,0), t>0,6(0)

Vo

0o

with
{ F(v,0) = —=P,(v-V)v—P,lyg,

G(v,0) =—(v-V)v—(v-V)o.
Here P, is the projection fromZL?(Q)" onto L2(2) = the completion ofC32 () = {¢ €

Ce(QN, V- p = 0}in LP(Q)N, 1 < p < oo via the Helmholz decompositioh?(Q)Y =
LE(Q) @ G,(Q) with G,,(Q) = {Vr, 7 € W'?(Q)}. The operator®3, and A, are defined by

B, = —A with domainD(B,) = W(Q) N W,*()
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10 NASSEREDDINE TATAR

and
A, = —P,A with domainD(4,) = D(B,) N L~ ().

—B, and—A, generate then bounded analytic semigrolips(—tB,), t > 0} on LI(2) and
{exp(—tA,),t > 0} on L2 (Q2) respectively. These semigroups are exponentially stable, that is

Lemma 6.1. For each)\; € (0,A;), « > 0 andj > 0, we have
HAO‘e_tAva < Oyt e Mt [v]|, forv e Ly($2)
and
[B%eP0|| < Cypit™Pe M |6]|, for 6 € L7(Q)
with some positive constants, ,, and éﬁ, Ap-
The problem can then be tackled via the formulation

v(t) = e Hryg + fot e~ (=94 F (v, 0)(s)ds,

0(t) = e By + [} e =9BaG(v,0)(s)ds.

The technique mentioned in Section 2 applies for these mild solutions and gives better results
than the argument used in |10].
It is worth mentioning here that our argument works even for functipsgch that

Vo)l = O@), 720

but with sufficiently small-. We refer the reader t0l[5] for the details.

7. FRACTIONAL DIFFERENTIAL PROBLEMS

In this section we would like to present another type of differential problem where our integral

inequality has proved to be very efficient. Let us consider the weighted Cauchy-type problem
Du(t) = f(t,u), t>0

(7.2)

7 u(t) [j=0 = b,
where D® is the fractional derivative (in the sense of Riemann-Liouville) of oftler o < 1
andb € R.

The functionf (¢, u) satisfies the hypothesis:

(F) f(t,u) is a continuous function oR™ x R and is such that

[f(tw)l < o) [u™,  m>1, 1>0,

whereyp(t) is a differentiable function o™ with ¢(0) # 0.
For the reader’s convenience, we recall below the definition of the derivative of non-integer
order.

Definition 7.1. The Riemann-Liouville fractional integral of order > 0 of a Lebesgue-
measurable functiofi : R — R is defined by

1°f(t) = ﬁ / (= )7 f(s)ds,

provided that the integral exists.
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Definition 7.2. The fractional derivative (in the sense of Riemann-Liouville) of ofdera < 1

of a continuous functiorf : R™ — R is defined as the left inverse of the fractional integraf of
d
Def(t) = —(I'"“f)(1).
f(t) = Z(N)
That is

D"F) = Frag i [ =97

provided that the right side exists.
The reader is referred tb [24] for more on fractional integrals and fractional derivatives.

Forh > 0, we define the space

C2([0, h]) := {v € C°((0,h]) : lim t"v(t) exists and is finit%.

t—0

HereC°((0, h]) is the usual space of continuous functions(6m.]. It turns out that the space
C°([0, h]) endowed with the norm

. T
Joll, = max £ fo(t)

is a Banach space.
The well-posedness has been discussed by Delbosco and Rodino in [3] and for a weighted
fractional differential problem with a nonlinearity involving a nonlocal term of the form

t
(7.2) e+ [ gltsu(s)is
0
in [6]. But, it seems that the appropriate space to work on (introduced in [8]) is
o ([0,R]) == {v € C}_,([0,h]) : there exist € R
andv* € C}_,([0,A]) such thaw(t) = ct*" + I*v*(t)} .

Sufficient conditions guaranteeing the existence of a fractional derivAtiveand the rep-
resentability of a function by a fractional integral of ordecan be found in[24]. In particular,
when

/Ot(t ) f(s)ds € AC([0, h))

(the space of absolutely continuous functions), thery exists almost everywhere. Moreover,
if f(t) e LY(0,h)andf,_, :=I'"2f € AC([0,h]), then

f(t) _ fl—a(())

I(a)
Seel[24, Theorem 2.4, p. 44].
Proposition 7.1. If « > 1/2, then the spac€y ([0, h|) endowed with the norm
= |Jvll,_ + D], _,

t - IUDf(1).

||U||1—a7o¢

is a Banach space.

In the spac&€’y ([0, ]), it can be proved (se&l[8]) that the probl7.1) is equivalent to the
integral equation

(7.3) u(t) = bt* "t + ﬁ/o (t —5)* 1 f(s,u(s))ds.
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Having this equatiorf (7]3) we can use the argument in Section 2 to investigate the asymp-
totic behavior of solutions of (7.1). Some power type results have been established in [8]. In
particular, we state

Theorem 7.2. Suppose thaf (¢, u) satisfies(F), uy — (m — 1)(1 —a) > 0 anda > 1/2. If
A > 0thenlu(t)] < Ct*', C > 0on|0,7] whereT is fixed such that, for some (fixed and
determined) constants’;, : = 1,2, 3

(1) fOT ©?(s)exp(eqs)ds < K, for somes > 0, or

2 @7T<1 andfOT i(s)ds < K, or

(b) T > 1 and
T s
/0 s” exp <m/0 b(T)dT) ds < K,
with
1 1] 1
vi=q [E—F,u—m(l—a)} and b(t) —E< o0) —l—z—?—f—u—(l—a)m).

In this last case we assume that) > d > 0 for all ¢ > 0.
The constant’ is estimated by (1) b in (1) and (2) (a) and bRd ="/ |b| ©'/™(0) x
exp ( I b(T)dT) in the case (2) (b).
Coroll/ary 7.3. If instead of the assumptidi¥') we have:
(F) f(t,u)is continuous ofR™ x R and is such that
Ift,w)| <tre o) |u]™, p>0,0>0 m>1

then the solution of problerp (7.1) exists globally and decays as a power function of non integer
order onR* provided thatp € L7(R*) and |||, < K.

For the same problem with the nonlinearity of the fofm|(7.2), some other results have been
proved in a recently submitted paper [7].
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