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ABSTRACT. We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel
Laplace operator. Some properties including completeness and the imbedding theorem are
proved. We next introduce a class of symbols of exponential type and the associated pseudo-
differential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces
of exponential type. Finally, using the theory of reproducing kernels, some applications are given
for these spaces.
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1. INTRODUCTION

The Sobolev spacd’s?(R9) serves as a very useful tool in the theory of partial differential
equations, which is defined as follows

W (RY) = {u e SRY, (1+]€2)FF(u) € /R .

In this paper we consider the Dunkl-Bessel Laplace operajoy defined by
1
Vo = (x/7$d+1) S Rdx][)? +OO[> Akﬁ = Ak,x’ + Lﬁ,xd+1a 6 > _57
where A\, is the Dunkl Laplacian oR?, and L; is the Bessel operator df, +oo[. We in-

troduce the generalized Dunkl-Sobolev space of exponentialwngfgﬁ(]l%i“) by replacing
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(14 l€]1)» by an exponential weight function defined as follows
WersRE) = {u e gL eldFp p(u) € 17 (R ],

WhereLiﬁ(Rdjl) it is the Lebesgue space associated with the Dunkl-Bessel transforgf and

is the topological dual of the Silva space. We investigate their properties such as the imbedding
theorems and the structure theorems. In fact, the imbedding theorems mean that for

u € Wy, 5(RT) can be analytically continued to the set € C4* / |Imz| < s}. For

the structure theorems we prove that for- 0, u € W f,fﬁ(]Ri“) can be represented as an
infinite sum of fractional Dunkl-Bessel Laplace operators of square integrable fungtioms

other words,

m

S m
u=> —(=Dip) .

meN
We prove also that the generalized Dunkl-Sobolev spaces are stable by multiplication of the
functions of the Silva spaces. As applications on these spaces, we study the action for the class
of pseudo differential-difference operators and we apply the theory of reproducing kernels on
these spaces. We note that special cases include: the classical Sobolev spaces of exponential
type, the Sobolev spaces of exponential types associated with the Weinstein operator and the
Sobolev spaces of exponential type associated with the Dunkl operators.

We conclude this introduction with a summary of the contents of this paper. In Sgttion 2
we recall the harmonic analysis associated with the Dunkl-Bessel Laplace operator which we
need in the sequel. In Sectiph 3 we consider the Silva sgaead its dualy,. We study the
action of the Dunkl-Bessel transform on these spaces. Next we prove two structure theorems
for the spacej.. We define in Sectiop|4 the generalized Dunkl-Sobolev spaces of exponen-
tial type Wgsfkﬂ(Ri“) and we give their properties. In Sect@n 5 we give two applications on
these spaces. More precisely, in the first application we introduce certain classes of symbols
of exponential type and the associated pseudo-differential-difference operators of exponential
type. We show that these pseudo-differential-difference operators naturally act on the general-
ized Sobolev spaces of exponential type. In the second, using the theory of reproducing kernels,
some applications are given for these spaces.

2. PRELIMINARIES

In order to establish some basic and standard notations we briefly overview the theory of
Dunkl operators and its relation to harmonic analysis. Main references!are [3,/4, 5/ 8| 16, 17,
19,20/ 21].

2.1. The Dunkl Operators. LetRR? be the Euclidean space equipped with a scalar pragduft
and let||z|| = v/{x,z). Fora in R%\{0}, let o, be the reflection in the hyperpladé, c R¢
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orthogonal tay, i.e. forz € R,
(o, z)
[lalP>*
A finite setR ¢ R4\{0} is called a root system iR "R a = {a, —a} ando,R = R for all
a € R. For a given root system, reflectionso,,, « € R, generate a finite grouy’ C O(d),
called the reflection group associated withWe fix ag € R\, ., H. and define a positive
rootsystemi, = {a € R| (o, 3) > 0}. We normalize each € R, as(a, a) = 2. Afunction
k: R — Con R is called a multiplicity function if it is invariant under the actionaéf. We
introduce the index as

= > k@)

aERy
Throughout this paper, we will assume thdty) > 0 for all @« € R. We denote by, the
weight function oriR? given by

Oo(x) =2 -2

= ] Ko o)

acER

which is invariant and homogeneous of deg2eeand byc, the Mehta-type constant defined

by
= ( [ (il d) .

We note that Etingof (cf.[[6]) has given a derivation of the Mehta-type constant valid for all
finite reflection group.

The Dunkl operatorg};, j = 1,2,...,d, onR? associated with the positive root systém
and the multiplicity functiork are given by

Z k(o f(aa(x))7 fe Ol(Rd)'

<a, z)

Tif(x) 81‘

aERy

We define the Dunkl-Laplace operatty, onR? for f € C%(R?) by
Apf(z) = Ti f(x)
st +a Y o (L) S-S0

(o, ) (o, x)?

where/ andV are the usual Euclidean Laplacian and nabla operatadRs eespectively. Then
for eachy € RY, the system

Tgu(%y):%u@,yL j:17"'7d7
u(0,y) =1

admits a unique analytic solutidii(z, y), * € RY, called the Dunkl kernel. This kernel has a
holomorphic extension t6€? x C¢, (cf. [17] for the basic properties df).
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2.2. Harmonic Analysis Associated with the Dunkl-Bessel Laplace Operatorln this sub-
section we collect some notations and results on the Dunkl-Bessel kernel, the Dunkl-Bessel
intertwining operator and its dual, the Dunkl-Bessel transform, and the Dunkl-Bessel convolu-
tion (cf. [12]).
In the following we denote by
o RT = R4 x [0, +oo].

o v = (71,...,04,Tar1) = (7, vq11) € RE.

e C.(R41) the space of continuous functions &4*!, even with respect to the last
variable.

o CP(R¥*Y)  the space of functions of clag®’ on R, even with respect to the last
variable.

e £,(R41)  the space of>-functions onR¢*!, even with respect to the last variable.

e S, (R¥1) the Schwartz space of rapidly decreasing function®éit, even with re-
spect to the last variable.

e D, (R¥1) the space of’*°-functions onR4*! which are of compact support, even
with respect to the last variable.

o S',(R¥1) the space of temperate distributionsRfi"!, even with respect to the last
variable. It is the topological dual &, (R**1).

We consider the Dunkl-Bessel Laplace operdlqr; defined by
(2.1) Vo = (2,741) € R'x]0, +o0],
Appf(x) = Ak,x’f<x/7 Ta1) + Eﬁ,xd+1f(37/a rar1), f € Cf(RdH)a
where/\;, is the Dunkl-Laplace operator dk’, andL; the Bessel operator dfi, +oo[ given
by

d? 20+1 d 1

B>—§.

E,ﬁ =
2 Y
d%ﬂ Tay1 dTap

The Dunkl-Bessel kernél is given by

(2.2) Az, 2) = K(iv', 2)js(Tas12a11), (z,2) € R x CHE)
whereK (iz’, 2') is the Dunkl kernel angls(x4+124+1) is the normalized Bessel function. The
Dunkl-Bessel kernel satisfies the following properties:

i) Forallz,t € Ci*!, we have
(2.3) Az, t) =A(t,2); A(2,0) =1 and A(Az,t) =A(z,At), forall XeC.

i) Forallv € N1 z ¢ R¥*! andz € C?*!, we have
(2.4) |DYA(z, 2)| < [a| M exp(]]]] || Tm []),

o

whereD? = ——<—_— and|v| = v; + - - - + vgy1. In particular

vy Yd+1
Oz =0z

(2.5) A(z,y)| <1, forall =z yec R
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The Dunkl-Bessel intertwining operator is the opera®qr; defined onC, (R*™!) by

(2.6) Rypf (7' wars)

2B+ 1 _ Td41 o
\/H((—ﬁ_|_)l)xd—|2—f /0 (@5, — )7 2Vif (2 t)dt, w400 > 0,
- 2

f(@',0), Zgp1 =0,
whereV, is the Dunkl intertwining operator (cfl._[16]).
Ry is a topological isomorphism froi, (R%*!) onto itself satisfying the following trans-
mutation relation

(2.7) Nk s(Ripf) = Res(Dapr f), forall f e E(RMY),

d+1
whereA g, = 37 07 is the Laplacian ofR4+1,
j=1

The dual of the Dunkl-Bessel intertwining opera®®y, ; is the operatofR, ; defined on
D*<Rd+1) by vy = (ylayd—H) S Rd X [07 00[7

r & 1
(2.8) tRk,,@(f)(y,7 Ydr1) = %/ (32 - y§+1)6‘5 tka(y/7 s)sds,
2 Yd+1

where'V}, is the dual Dunkl intertwining operator (cf. [20]).
"Ry 5 is a topological isomorphism frof, (R¢™!) onto itself satisfying the following trans-
mutation relation

(2.9) Rip(Lrsf) = Dasi("Risf), forall fe S, (RH).
We denote by} ,(R{"") the space of measurable functionsRit" such that

P

HfHLiﬂ(R‘fl) = (/Rd+1 | f(z) Py p(x) dl“) < oo, if 1<p<+oo,
+

11 e, sty = essngigl |f(2)] < +o0,

wheredy;, g is the measure oR%™ given by
dpr,p(', Tas1) = wk(xl)xflﬁldx’dxdﬂ.

The Dunkl-Bessel transform is given f@érin L,EJ,/B(Ri“) by
@10)  Fon()Wuan) = [ 0 A -,y (o),
RJr

forall y = (y,yap1) € RE™.

Some basic properties of this transform are the following:
i) For fin Li 4(R4™),

(2.11) H]:D,B(wa%(Riﬂ) < HfHL%;ﬁ(]Rfrl)_
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i) Forfin S,.(R%!) we have

(2.12) Fpp(Lxsf) ) = =|WIPFpp(f)(y), forall yeRY
iii) Forall f € S(R*!), we have

(2.13) Fos(f)y) =Foo "Rip(f)y), forall yeRY,

whereZ, is the transform defined byty € R,
(2.14) FolNy) = / L J@em T cos(aapayan)dr, S € Du(RTY).
R4
iv) Forall fin L} ;(R{™), if Zp p(f) belongs tal} 5(R{™), then

(2.15) f6) = mis [ FouD@AE sl o

where

o2

(2.16) Mg = "k .
4’Y+5+§(1“(5+ 1))2

v) For f € S.(R%1), if we define

Fos(N)y) = Foe(f)(-y).

then
(2.17) Fp.Fp,s = FpsFp =mygld.

Proposition 2.1.

i) The Dunkl-Bessel transfordip 5 is a topological isomorphism frors, (R%*!) onto
itself and for all f in S, (R*1),

(2.18) [ i@ P dsta) = ms [ 10O st

1
i) In particular, the renormalized Dunkl-Bessel transforfn— m; ;7p p(f) can be
uniquely extended to an isometric isomorphisni@gg(Rdjl).

By using the Dunkl-Bessel kernel, we introduce a generalized translation and a convolution
structure. For a functiorf € S,(R¥') andy € R%™ the Dunkl-Bessel translation, f is
defined by the following relation:

Fp,p(ryf)(x) = Mz, y) Fps(f)(z).

If f e & (R is radial with respect to thé first variables, i.ef(z) = F(||2'||, zas1), then it
follows that

(229) 7 f(2) = Ras |[F (VTP + TP+ 200 /ey + 0r + 20001 ) | (0 2as).
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By using the Dunkl-Bessel translation, we define the Dunkl-Bessel convolution proeugtg
of functionsf, g € S.(R*™!) as follows:

(2.20) f*p.pglw) = /R o T )9 dpes(y)-

+
This convolution is commutative and associative and satisfies the following:

) Forallf,g € S.(RE™), f *p p g belongs taS, (RE™) and
(2.21) Fp.s(f *p,8 9)(y) = Fp(f)W)Fp.B(9)(Y)
i) Letl <p,q,r <ocosuchthaf + -1 =11If fe L} 5(RY) andg € Lf 5(RY) is
radial, thenf «p 5 g € L}, ,(RT™) and
(2.22) |.f *p,B 9||L;,5(Ri+1) < Hf”Li,s(RiH) HgHLZ,B(Riﬂ) :
3. STRUCTURE THEOREMS ON THE SILVA SPACE AND ITS DUAL

Definition 3.1. We denote byg., or G.(R?"!) the set of all functions> in &,(R*"!) such that
foranyh,p > 0

Nypal) = sup (M)

is finite. The topology irg. is defined by the above seminorms.

Lemma 3.1. Let¢ be inG,. Then for everyr,p > 0

epHxH Am ('0 €T
No(g) = sup ( | AR50( )|>'

wcrd+1 hmm)!
meN

Proof. We proceed as in Proposition 5.1 of [13], and by a simple calculation we obtain the
result. O

Theorem 3.2. The transformFp, 5 is a topological isomorphism froig. onto itself.

Proof. From the relations| (28)[ (2.9) and Lemina]3.1 we see "tRat; is continuous from

G, onto itself. On the other hand, J. Chung et al. [1] have proved that the classical Fourier
transform is an isomorphism frog, onto itself. Thus from the relation (2.[13) we deduce that
Fp.p is continuous frong, onto itself. Finally sincej. is included inS.(R*™!), and Fp g is

an isomorphism frons, (R?+1) onto itself, by ) we obtain the result. O

We denote by’ or G’ (R¢*!) the strong dual of the spack.

Definition 3.2. The Dunkl-Bessel transform of a distributiéhin G. is defined by
<fD,B<S)7w> :<Sva,B(¢)>7 weg*
The result below follows immediately from Theor¢m|3.2.

Corollary 3.3. The transformFp, z is a topological isomorphism froigi, onto itself.
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Let 7 be inG.. We define/\;, g7, by
(DT, ) = (1, AR prp), forall o e @,.

This functional satisfies the following property

(3.1) Fo,5(Lrs7) = ~lyl1*Fp5(T).
Definition 3.3. The generalized heat kernej s is given by
2¢k Lzl 2+1yl? T y >
Trs(t,z,y) = 1w A —i—,—= | ;
A S (5 s

z,y € R > 0.

The generalized heat kernigj s has the following properties:

Proposition 3.4. Letz,y in RE™ andt > 0. Then we have:

) Tus(toas) = [ exp(=HIEI)A G A= ).

+
i) [, Tralt.og)di (o) = 1
RIH

i) For fixedy in RT™, the functionu(z,t) := T 4(¢, 7, y) solves the generalized heat
equation:

Ak,gu(x,t):%u(x,t) on RIx]0, 400].

Definition 3.4. The generalized heat semigro(il;. 5(t)):>o is the integral operator given for
fin L2 5(RE™) by

[ st n. ) )dialy) ¥ >0,
R+

f(z) if +=0.

Hip(t)f(x) =

From the properties of the generalized heat kernel we have

f*ppp(x) if t>0,
3.2 H;. 5(t =
(3.2) k(1) f() { f() £ t_o,
where i
() = 2¢y, iy

T OT(B+ 1)(4t)1BrE

Definition 3.5. A function f defined onR%*! is said to be of exponential type if there are
constants:, C' > 0 such that for every: € R%H

| (@)] < exp k|||l

The following lemma will be useful later. For the details of the proof we refer to Komatsu

[9]:
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Lemma 3.5. Forany L > 0 ande > 0 there exist a functiom € D(R) and a differential
operator P(4) of infinite order such that

L
(3.3) suppov C [0,¢], |v(t)] < Cexp <—?) , 0<t< oo
d > d\" Lk
3.4 P(— )= — <C-L o< Li<I;

(3.5) P (%) o(t) = 6+ w(t),
wherew € D(R), suppw C [5, €].

Here we note thaP (A, ) is a local operator wher&, 5 is a Dunkl-Bessel Laplace operator.
Now we are in a position to state and prove one of the main theorems in this section.

Theorem 3.6.1f u € G/ then there exists a differential operatBr < ) such that for somé' > 0

andL > 0,
d > d\" "
_ ) = _ < (=
P (dt) Za” (dt) el < Cn!2’

n=0

and there are a continuous functigrof exponential type and an entire functibiof exponential
type inR%™ such that

(36) u=P(Dpa)gle) + hiz).

Proof. Let U(z,t) = (u,, 'k 5(t, z,y)). Sincep, belongs tag, for eacht > 0, U(z,t) is well
defined and real analytic ifR%™), for eacht > 0.
Furthermore{/(z, t) satisfies

(3.7) (0 — D p)U(z,t) =0 for (z,t) € REx]0, o0l

Hereu € G, means that for some > 0 andh > 0

|0%¢(x)| exp k|||
hlela) ’

By Cauchy’s inequality and relatior|s (2.4) ahd [3.8) we obtaint fer0

(3.8) [, )] < Csup beq.
Ua,1)] < C'expk’ [||x|| ftt ﬂ

for someC” > 0 andk’ > 0. If we restrict this inequality on the strip< ¢ < ¢ then it follows
that

1
|U(x,t)| < Cexpk |:||{E|| + E] , O<t<e
for some constants' > 0 andk > 0. Now let

Gt = [ Thalte.pole)dsla), ¢ €.
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Moreover, we can easily see that

(3.9) G(,t)—¢ in G,ast— 0"
and

(3.10) [ Ul 0ot ae) = (. 6o ).
Then it follows from [3.9) ;an(B_TJ,O) that

(3.11) lim Uz, t) =u ing..

Now choose functions, w and a differential operator of infinite order as in Lemjmg 3.5. Let
(3.12) Uz, t) = /OOO Uz, t + s)v(s)ds.
Then by takings = 2 andL > & in Lemmg 3.5 we have
(3.13) U(x,t)| < C"expk(|Jz]] +1t), t>0.
Therefore,U(x, t) is a continuous function of exponential type in
R x [0, 00[= {(a:,t) rr e R ¢ > 0}.
Moreover,U satisfies
(3.14) (B — Npg)U(z, 1) =0 in - R0, 00

Hence if we sey(z) = U(z,0) theng is also a continuous function of exponential type, so that
g belongs ta7..
Using [3.5) in Lemma& 3|5, we obtain for> 0

P(=Ng)U(z,t) = P (—i> Ulz,t)

dt
(3.15) =U(x,t) +/ U(z,t+ s)w(s)ds.
0
If we seth(z) = — [;° U(z,s)w(s)ds thenh is an entire function of exponential type. As

t — 0%, (3.18) becomes
u=P(=Arp)g(x) + h(z)

which completes the proof by replacing the coefficient®f P by (—1)"a,,. O

Theorem 3.7.LetU(z, t) be an infinitely differentiable function R4+ x 0, co| satisfying the
conditions:

|) (@ — Akﬂ)U(l’,t) =0in le_—HX]O, OO[
i) There exist > 0 andC > 0 such that

1
(3.16) |U(x,t)]SC’expk(Hx||+¥),0<t<5, z € R
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for some= > 0. Then there exists a unique elemerg G/ such that
U(ﬂf,t) = <uyvrkﬂ(t7$ay)>y t> 0

and
lim U(z,t) =u in G,

t—0t

Proof. Consider a function, as ifi (312)
Uz, t) = / U(x,t+ s)v(s)ds.
0
Then it follows from [3.1B),[(3.14) and (3/15) th&k(x,t) and H(z,t) are continuous on
R% % [0, 0o[ and
(3.17) U(x,t) = P(=Dp3)U (2, 1) + H(z, 1),

where
H(z,t) = —/ U(z,t+ s)w(s)ds.
0

Furthermoreg(x) = U(z,0) andh(z) = H(z,0) are continuous functions of exponential type
onR%*!. Defineu as

w=P(~Dp)g(@) + hiz).

Then sinceP(—A 3) is a local operator, belongs taj, and

lim U(z,t)=u in g..

t—0+

Now define the generalized heat kernelstfor 0 as
Awt) =9 <o o) = [ o)Tslt. . )dpn (o)
RYH

and
Bat) = (o (@) = [ H@Twoltsa.)disalo)

Then it is easy to show that(z,t) and B(z,t) converge locally uniformly tgy(z) andh(x)
respectively so that they are continuousRSfi* x [0, oo, A(z,0) = g(x), andB(z,0) = h(x).

Now letV (z,t) = Ul(x,t) — A(x,t) andW (z,t) = H(z,t) — B(x,t). Then, sincey andh

are of exponential typé/(-,t) andW (-,¢) are continuous functions of exponential type and
V(z,0) = 0,W(x,0) = 0. Then by the uniqueness theorem of the generalized heat equations
we obtain that

U(x,t) = (g *D B Pt) ()
and
H(z,t) = (h *p5 p) ().
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It follows from these facts an@ (3.17) that

w *xpp pr= |P(=Drpg)g+h| *p 5 Dt

= P(=Lpp)U(t) + H(:,t)

=U(-1).
Now to prove the uniqueness of existence of such G, we assume that there existv € G
such that

Uz, t) = (u *D.B pt)(x) = (v *D.B pt)(a:).
Then
FD,B(U)JTD,B(pt) = fD,B(U)fD,B(Pt)

which implies thatFp g(u) = Fp g(v), sinceFp g(p:) # 0. However, since the Dunkl-Bessel
transformation is an isomorphism we have- v, which completes the proof. OJ

4. THE GENERALIZED DUNKL -SOBOLEV SPACES OF EXPONENTIAL TYPE
Definition 4.1. Lets be inRR, 1 < p < oo. We define the spadéfgsfkﬁ(Ri“) by
{u c G eflllFy p(u) € Liﬂ(Rfl)}.
The norm oniV;”, ,(RY™) is given by

P

lallwgs, , = (mk,ﬁ / eps"f'|fD,B<u><s>|pdum<s>>
+

Forp = 2 we provide this space with the scalar product

4.1) (usohuge, , = mra [ | 9P a0) (P ©diea(e),
Gx,k,B R(iJrl
and the norm
2 _
(4.2) ||U|‘Wgs*2kﬁ = <U7U>W'§f’kﬁ'

Proposition 4.1.
) Letl < p < +oo. The spaceI/Vgsffkﬁ(Ri“) provided with the norn1|-||Wéﬁm is a
Banach space.
i) We have
Wolh s(RET) = L (R,
i) Letl < p < 400 andsy, sp in R such thats; > s, then
W (R = Wik (R,

Proof. i) It is clear that the spacé&?(RE™, ersllélidy,, 5(¢)) is complete and sinc&p 5 is an
isomorphism frong; onto itself,Wgsf”W(Ri“) is then a Banach space.

The results ii) and iii) follow immediately from the definition of the generalized Dunkl-
Sobolev space of exponential type. O
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Proposition 4.2. Let1 < p < 400, andsy, s, s5 be three real numbers satisfying < s < s,.
Then, for alle > 0, there exists a nonnegative constahtsuch that for alk: in Wgsfkﬁ(Ri“)

(4.3) lullwge, , < Cellullwzrr |+ ellullwzzr .

Proof. We consides = (1 — t)s; + tsq, (with ¢ €]0, 1]). Moreover it is easy to see

1-t t
lallwge, , < lullihy Tl
Thus
__t 1-t t
lullwgs, , < (s lullwzr ) (cllullwgs )
__t
<e ilullwgr  +ellullwzr -
Hence the proof is completed for. = e, OJ

Proposition 4.3. For s in R, 1 < p < oo andm in N, the operatorA}’; is continuous from
WP, (R into W5 LB (REH) for anye > 0.

Proof. Letu be in1W3?, ;(R%H), andm in N. From [3.1) we have

d+1
RY

/d ep(s_e)HgH|.7:D,B(A2rfgu)(f)|pdﬂk,ﬁ<§> _ / €p(s_€)|‘§||||§‘|2mp|fD’B(u)<§>|pdﬂk,ﬁ(§)-
R4

AS SUp g+ |[€]|>mPeliEll < oo, for everym € N ande > 0

/d €p(S_E)H£H|fD,B(Ang)(§)’pdﬂk,g(§) < / epSHEH|FD7B(U)(§)|dek;,B(£> < 400.
R R

ThenA},u belongs toVy 7% (R4), and

1A sullween < llullwgr, -

Definition 4.2. We define the operatdr-A, 5)2 by Vo € R4+,

uw) = s [ AT s o). e S.RM),

N

(=Arp)

Proposition 4.4. Let P((—Ay)2) = 3, o am(—245) % be afractional Dunkl-Bessel Laplace
operators of infinite order such that there exist positive consté@rasd such that

,r,m

(4.4) la,| < C forall m € N.

m!’
Letl <p < +ooandsinR. If an element. isin ngkﬂ(Rfﬁl), thenP((—Ay )2 )u belongs
to W5 %(RET), and there exists a positive constafisuch that

1
HP((_AIC,@Q)UHWS:;;% < CHuHWSf,k,ﬁ'
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Proof. The condition|[(4.]4) gives that

[PIEIN] < € exp(r[[€]])-

Thus the result is immediate. O

Proposition 4.5. Let1 < p < 400, ¢, s in R. The operatoexp(t(—/A 3)2) defined by

N

Vo € REF, exp(t(—Lp)?)u(z) = myg Az, &) Fp p(u)(€)dpur p(€), u € G

RO+
is an isomorphism fromi;”, ;(RT™) onto W 7 (RYH).
Proof. Foruin Wg”, ;(R{™) itis easy to see that

1
| eXp(t(—Akﬂ)Q)uHWé;t}fﬁ - ||u||W§fk,,@’

and thus we obtain the resuilt. O

Proposition 4.6. The dual oﬂ/[/gfkﬁ(Ri“) can be identified aBT/g:fﬁﬁ(Ri“). The relation of
the identification is given by

(4.5) (o) =mea [ | o) FoaloEdnale).
R+
with w in W52, 5(RT) andv in W5 525 (RTH).
Proof. Let u be in W%, 5(RT™) andv in W *75(R1™). The Cauchy-Schwartz inequality
gives
[, 0] < sz, Nollyzoz
Thus forv in ng;fﬁ(Ri“) fixed we see that —— (u,v); s is a continuous linear form on
W52, 5(R4!) whose norm does not excegd -2 - Taking theug = Fp, s (7 181Fp 5 (v))
element ofivy?, ;(R4™), we obtain(ug, v)y, 5 = [[olly; 2 -
Thus the norm ofi — (u, v)y 5 is equal tq|v||W§s,13ﬂ, and we have then an isometry:
—5,2 d+1 5,2 d+1v)/
Wolks (RE) — (W5 s(RE))
Conversely, lef. be in (Wéfm(Rdjl))'. By the Riesz representation theorem (4.1) there

existsw in W52, ;(RE) such that

Liu) = (w whyzz, |

= Mg /R o €N FD p () () Fp p(w) () dpirp(8),  forallu € Wg 5(RET).
=+

If we setv = Fp' (e*l€1 Fp p(w)) thenw belongs oV % ,(RE) and L(u) = (u, v}y, for
all win Wgsfkﬁ(Ri“), which completes the proof. O
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Proposition 4.7.Lets > 0. Then every: in Wg:fﬁﬁ(Ri“) can be represented as an infinite sum
of fractional Dunkl-Bessel Laplace operators of square integrable fungtiomother words,

m

S m
u = Z M(—Akﬁ) 24.

meN
Proof. If win W, %2, (R%™) then by definition
e WFp p(u)(€) € Li 5(REH),
which Propositiof 2]1 i) implies that

Fp,p(u)(§)

Fo.p(0)&) = == S

2 d+1
€ L7 4(RY).
Hence, we have

Fppu) =) %Hg”m}bﬁ(g), in G,

meN
s m .
=> AN ((=Lkp)2g), in G
meN
This completes the proof. O

Proposition 4.8. Let1 < p < +o0. Everyu in Wgkaﬁ(Rdjl) Is a holomorphic function in the
strip {z € C¥*1) || Im z|| < s} for s > 0.

Proof. Let
o) = [ NGO T O, 2=t
From [2.4), for eactu in N**! we have
D2 (A=, ) Fp,(w)(©)) | < N1 el () €.

On the other hand from the Cauchy-Schwartz inequality we have

q

+1||5r|q'“'eq5“<'y—S>duk,ﬁ<g>> lullwys

Gu kB

L e (a0 o) < ( /

G
Since the integral in the last part of the above inequality is integrabl|e|jf < s, the result
follows by the theorem of holomorphy under the integral sign. O

Notations. Let m be inN. We denote by:

e & (RIH1Y) the space of distributions dd?*! with compact support and order less than
or equal tom.
o & ..(RT™) the space of distributions in £, (R%™) such that there exists a positive

exp,m

constant” such that
| Fp,5(w)(€)| < Cem™El,
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Proposition 4.9.
i) Letl < p < +o0. For sin R such thats < —m, we have
géxp,m(R(—il—+1> - Wéfk,ﬁ(lej_l)
i) Letl < p < +oo0. We have, fos < 0 andm an integer,
En(RL) C W, (R,

Proof. The proof uses the same idea as Theorem 3.12 of [13]. O

Theorem 4.10.Lety be ingG,. For all s in R, the mapping: — u from Wgsfm(Ri“) into
itself is continuous.

Proof. Firstly we assume that> 0.
It is easy to see that

~ )
2 (25) 2
||U||ngm <> I 1al 4 g1y

=0

where||-| A7 (RO designates the norm associated to the homogeneous Dunkl-Bessel-Sobolev
space defined by

2 _ 2s 2
el et = VPO )

On the other hand, proceeding as in Proposition 4.1_of [14] we prove thabibelong to
H]?,ﬁ(RiJrl) n Lz?ﬁ(Rfrl), s> 0thenuw € H;B(Rii:rl) and

vl ey < € [l e ooy 1ol iy gy + 10l e e el ooy

Thus from this we deduce that fer> 0

o

2 }: (25)j 2
Uu s, S —_— u i
e Hng,k,ﬁ = J! e HHéﬁ(Ri-‘rl)

<C [H90||2?B(Ri+1)||u”12,vgs,2kﬁ + HU\lzm(Rd++1)\|90H€V§,2kB < 400.

For s = 0 the result is immediate.
For s < 0 the result is obtained by duality. O

5. APPLICATIONS

5.1. Pseudo-differential-difference operators of exponential type.The pseudo-differential-
difference operator (x, A\, 5) associated with the symbalz, ¢) := A(z, —||£||?) is defined

by
(5.1) (A(I, Ak,5>u) () = mig /d+

L

r > 0, defined below:

L A(xvf)a(‘%€>FD,B(U)(§)dﬂk,ﬁ(€)a u € G,

wherea(z, ) belongs to the class;,

exp’?

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 55, 24 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

DUNKL-SOBOLEV SPACES 17

Definition 5.1. The functiona(z,§) is said to be inS;_  if and only if a(z,{) belongs to
C>(R¥! x R¥1) and for each compact séf ¢ R%Z™ and eachy, v in N**!, there exists
aconstanCx = C,,,, x such that the estimate

|DEDYa(x,§)| < Cx exp(r[[¢]]), forall (z,¢) € K x RY™
hold true.
Proposition 5.1. Let A(z, A 3) be the pseudo-differential-difference operator associated with
the symbobi(z, &) := A(z, —|[¢]]?). If a(, ) € ST, thenA(z, Ay 5) in (5.1) is a well-defined
mapping oG, into £, (R4*1),
Proof. For any compact sét’ C Rfﬁ !, we have

la(x,§)| < Ci exp(r|é]]), forall (z,£) € K x RY™.

On the other hand singeis in G, the Cauchy-Schwartz inequality gives that

d+1
R+

[ 18 0, &)Foalu) (€l s(€) < el ( / e—2<s—r>|aduk,ﬁ<g>>

is integrable fors > r. This prove the existence and the continuity &{x, Ay 3)u)(x) for all
xin Ri“. Finally the result follows by using Leibniz formula. 0J

Now we consider the symbol which belongs to the clﬁggfﬁmd defined below:

Definition 5.2. Let r,/ in R be real numbers with > 0. The functiona(z, ) is said to be
in 7L ifand only if a(z, €) is in C®(R! x R41), radial with respect to the first + 1

exp,ra

variables and for each > 0, and for each:, v in N?*!, there exists a constagt = Cy. .0 SUCh
that the estimate

| D¢ DYa(z, )] < CLWM ptexp(r [|€]] 1))
hold true.

To obtain some deep and interesting results we need the following alternative fdrm,ak; 5).

Lemma 5.2. Let A(z, Ay g) be the pseudo-differential-difference operator associated with the
symbola(z, €) == Az, —[€]|%). If a(z, €) is in SL, ..o thenA(z, A ) in (5.1) is given by:

(A(x, Akﬂ)u) (x)
—mea [ Ma© [ L 7 Fon @) O F ) )| 6
+ +
for all u € G, where all the involved integrals are absolutely convergent.

Proof. When we proceed a5 [10] we see that forfalt> 0 there existC > 0 and0 < 7 <
(Ld)~! such that

(5.2) [ Fp.5(a)(& )| < Cexp(rnl] — 7 |I£]]).
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On the other hand sineein G., we have
\Fp,p(w)(n)] < Cexp(—t|ln]]), vt > 0.

Thus from the positivity for the Dunkl-Bessel translation operator for the radial functions we
obtain

|70 (Fp,5(a) (-, m) (€)Fps(w)(n)] < Cexp(—(t —r)|[n|))7—y(exp(=7 |I-[))(€)-
Moreover it is clear that the function— exp(—(t — r) ||n||)7—,(exp(—7 ||-]|)) (&) belongs to
Li 5(RT) for t > r, 7 > 0. So that

[ ElF(a) o) € P m(w) )] i)

<0 [ expl=(t = 1) Il ra(exp(r ] D)€l

The right-hand side is a Dunkl-Bessel convolution product of two integrable functions and hence
is an integrable function oR%*!. Therefore the function

£ 7_o(Fp,a(@)(-;1))(§)Fp,B(u)(n)dpks(n)

RYH!
isin L}w(Riﬂ). Applying the inverse Dunkl-Bessel transform we get the result. O
Now we prove the fundamental result

Theorem 5.3. Let A(z, A\ 5) be the pseudo-differential-difference operator where the symbol
a(z,€) = Az, —|[¢]]?) belongs taS.; .., Then for allu in G, and all s in R

(5.3) 1A, Deplullwge, , < Collullyrres.
Proof. We consider the function

U€) = e [ r o (Fonl@) .)€ Fosw)(dualn), s € R

Then invoking [(5.R) and (2.19) we deduce that
64) U0 < [ exollr+3) [l Fon(o)

X Ty (exp(=(1 = [s]) [ly[])) (€)dprp(n), s €R.
The integral of [(5.4) can be considered as a Dunkl-Bessel convolution product between

f(&) = exp(=(7 — |s]) [[¢]]) and g(§) = exp((r + ) |[¢[])[Fp,5(u)(S)]. Itis clear thatf is
radial and belongs té}, ,(R?*") for 7 > |s|, on the other hand sinc&p 5(u) in G, theng in

Ly, 5(RYT). Hencef #p g g isin L ,(RT™) and we have
1f *0.8 9ll1p ey < [ flloy  wernll9glliy @ary = Collullyrren .

Thus
A2, Agg)ul e

s = NUsllir vy < MIf *0.8 9l miv) < Cllullyyren -
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This proves|[(5]3). O
5.2. The Reproducing Kernels.

Proposition 5.4. For s > 0, the Hilbert spacé/VgSfm(IR{i“) admits the reproducing kernel:

Oraliry) = mia [ A O e ).

that is:

i) For everyy in R7™, the function: — O, 5(, y) belongs toVy?, ;(R).
ii) Foreveryfin W% ;(RT™) andy in R, we have

(f:Ors( 9)wez, , = F(y).
Proof. i) Let y be inR%. From [2.5), the function

£ Ay, eIl

belongs toL} ,(RT™) N L} 4(RTT) for s > 0, then from Propositio.l ii) there exists a
function in L7 5(RT™), which we denote by (-, y), such that

(5-5) Fo.5(Ors( ) (€) = A=y, §)e >l
Thus©y s(x,y) is given by

Oualiry) = ms [ A OM=y. e djus(6).

ii) Let f be inWg?, ;(RT) andy in R%™. From )) an5) we have
2Ok = M / Fon(F)OAW druns(€) = F(y).

Qkﬁ

Proposition 5.5.
i) Letf being,. Thenu(z,t) = Hys(t) f(z) solves the problem
{ VAV RS %) u(r,t) =0 on RIx]0, 00|
i) The integral transforni{ 5(¢), ¢ > 0, is a bounded linear operatorfromfgfkﬂ(Ri“),

sinR, into L7 ,(RT™), and we have

HHk’ﬂ(t)f”Li,ﬁ(Riﬂ) < e4f Hf”Wé 2
Proof. i) This assertion follows from Definition 3.4 and Proposition| 3.4 iii).
i) Let f be ing?, ,(R%™). Using Propositioh 2|1 ii) we have

a1 12, gassy = sl Fon(HiaDIZ, g
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Invoking the relation ship$ (2.21) ar[d (B.2) we can write

||Hk’ﬁ(t)f||ii,6(Ri+l) = mk,g/ 6_2“'6“2|FD,B(f)(£)|2de,ﬁ(€)-

R‘f‘l
Therefore
52
1M f |z ey < €51l

Gark,B

O

Definition 5.3. Letr > 0, ¢ > 0 ands in R. We define the Hilbert spacé;”, ;(R7™) as the
subspace oWgSfW(Ri“) with the inner product:
<f7 g>HT’S = T<f7 g>Wé;2,k,ﬁ + <Hk,5<t>f7 Hk,ﬂ(t)g>Liﬂﬁ(Rd++1)7 f? g e ngk7ﬂ(Ri+l)

Gk,
The norm associated to the inner product is defined by:

11177+

Gx k.8

= erHI%Véf,k,ﬁ + ||Hk,ﬂ<t>f”izﬁ(lki+l)'

Proposition 5.6. For s € R, the Hilbert spacellg;s,kﬂ(]l%fl) admits the following reproducing
kernel:

R@wwqmﬁ/ A, A=y, Odpis(&)

RA+1 re2sliéll e—2tl¢]]?
+

Proof. i) Let y be inR%™. In the same way as in the proof of Proposi 5.4 i), we can prove
that the functionz — P,(z,y) belongs taL? ,(RT™") and we have

(5.6) Fos (o) () = —l=:8)

— pre2sllEll 1 e—2tllgll?”

On the other hand we have

(5.7)  Fps(Hepst)(Pr(-9)) (&) = exp(—tl[¢|[*) Fp,5 (P (- 9)) (£), forall & e R

Hence from Proposition 2.1 ii), we obtain

RO I

d+1
R-‘r

e | Fp (P ) (€) i s(€)

c L
= 2 /Ri+1 eAslIEll :uk‘ﬁ(g)

Therefore we conclude th@®, (-, y) || < oc.
Gx,k,B

ii) Let f be inHj®, ,(RTT) andy in RT™. Then
(5.8) (o PCoymgs, , =rh + I,
where

I = (f, P y))yse  and

2
Gx,k,B

I = (Po®)F. Hia() (P 0) g et
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From (5.6) and[(4]1), we have
I, = Mg /d €2SHEHFD,B(JC)(£)A(Z/7g)duk,ﬂ(g)
REH

re2slléll 4 e—2tl€l1?
From (5.7) and[(5]6) and Propositipn]2.1 ii) we have
L= / e M Fp 5 () (OA Y, ) dpes(€)
2= Tk d+1 '
R+

re2slléll 4 e—2tl€l1?
The relations|(518) andl (Z.[L5) imply that
P, , = Fw).

O

5.3. Extremal Function for the Generalized Heat Semigroup Transform. In this subsec-
tion, we prove for a given functiogin Liﬂ(Ri“) that the infimum of

2 2 8,2 d+1
{FIF Iy +llg = s, gy, £ € W32 H(RED ]
is attained at some unique function denoted/py called the extremal function. We start with

the following fundamental theorem (cf. [11,/18]).

Theorem 5.7. Let Hx be a Hilbert space admitting the reproducing keré&(p, ¢) on a sett
and H a Hilbert space. Lef. : Hy — H be a bounded linear operator oAy into H. For
r > 0, introduce the inner product i&/ x and call it Hx, as

(fi, o) i, = r{(f1, fo) e + (Lf1, Lfo)u.
Then

i) Hg, is the Hilbert space with the reproducing kerr€}(p, ¢) on £ which satisfies the
equation
K(-,q) = (rl + L"L)K,(+,q),

whereL* is the adjoint operator of. : Hx — H.
i) Foranyr > 0 and for anyg in H, the infimum

nf el +1LF = gl }
is attained by a unique functioff , in Hx and this extremal function is given by
(5.9) fra(p) = (9, LK.(-,p)) -
We can now state the main result of this subsection.
Theorem 5.8.Lets € R. For anygin L ;(RT™") and for anyr > 0, the infimum

. 2 2
(5.10) A A e, g = HesOS 1, o |

g*7k1ﬁ( +
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is attained by a unique functiofy , given by

(5.11) frglz) = / 9@ (2, y)dpn p(y),
R

where

(5.12) Qr(z,y) = Qrs(z,y)

re2sléll 4 e—2tl8l?

~EPA (2 EYA(—
— mk’ﬁ /Rd+1 € (x7 6) ( y? 5) dﬂk7ﬂ(§).

Proof. By Propositior] 5.6 and Theorem 5.7 ii), the infimum given py (b.10) is attained by a
unique functionf; , and from ) the extremal functioff, is represented by

Frg) = {9, His (P v)) 2 ey v € RY

whereP, is the kernel given by Propositipn $.6. On the other hand we have
Hios(0)F () = s / - exp(—UElR) Fon (DM, durs(©), forall o € RE
R

Hence by|(5.6), we obtain
xp(—t||€][P)A(z, E)A(—y,
Hioalt) (P 1) (@) = my / XU DA DA g o(€)
= Qr(,y).
This gives|[(5.1pR). O

Corollary 5.9. Lets € R, § > 0 andg, g5 in L} ;(R{™") such that

Hg - géHLiﬂ(Riﬂ) <.

Then
)

Hfrg_ rgg“ g kﬁ = 2\/—
Proof. From [5.12) and Fubini's theorem we have

e I Fp 5(9)(€)
(5.13) Fo.s(frg)€) = f :—2t\|£||2'

Hence

e~ Fp 5 (g — gs)(€)
re2sllEll 1 e—2t1€]12

Fpp(fry = frg)€) =
Using the inequality(z + y)* > 4xy, we obtain

AN Fpp(fr, — 1) O] < <4 |7DB(9 95) (7.
This and Proposition 2.1 ii) give

2
||frg_ rg5|| k,ﬁ <

Mk,6 _ 2
47,, ||‘7:D,B<g gd)||Li,ﬁ(Ri+l)

< L 2
= E”g - gts”Liﬁ(Ri-‘rl);

from which we obtain the desired result. O
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Corollary 5.10. Lets € R. If fisinWg?, ;(RT") andg = Hs(t) f. Then

”f:,g_f”?/véﬂkﬁ _>O a.ST'—>O

Proof. From (3.2),[(5.1B) we have

and

Fp,5(f)(&) = exp(tl|&]1*) Fp,5(9)(€)

e I 71, 5(9)(9)(§)

reQSHEH —+ 6_2'5“5“2

Foa(fi)(&) =

Hence

—reZlEFp 5(£)(€)

re2slléll 4+ e—2tll¢l1

Fps(frg— &) =

Then we obtain

0= e, = [ @O P (€)

with
2,.6s]€]|
fir1.5(§) = (re2sligll 4 e=2tli€l?)2”

Since

hm hyis(§) =0
and

et s(E)] < 628H5H7
we obtain the result from the dominated convergence theorem. 0J
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