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We study the Sobolev spaces of exponential type associated with the Dunkl-
Bessel Laplace operator. Some properties including completeness and the imbed-
ding theorem are proved. We next introduce a class of symbols of exponential
type and the associated pseudo-differential-difference operators, which naturally
act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using
the theory of reproducing kernels, some applications are given for these spaces.
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1. Introduction

The Sobolev spac#*?(R?) serves as a very useful tool in the theory of partial
differential equations, which is defined as follows

W (RY = {u e SRY, (1+]]7)F F(u) € PR}

In this paper we consider the Dunkl-Bessel Laplace operafgy defined by DTSy S
, d 1 Hatem Mejjaoli
Vi = (7', 2401) € R*X]0, +o0], Dgp =D + Lﬁ,xd+17 B> Ty vol. 10, iss. 2, art, 55, 2009

where/\; is the Dunkl Laplacian ofR¢, and L is the Bessel operator df, +oo].
We introduce the generalized Dunkl-Sobolev space of exponentiaﬂt@@g B(Rﬁlj D) Title Page

by replacing(1 + ||¢||?)» by an exponential weight function defined as follows

Contents
WP, s(REF) = {u € g, elrp p(u) € Lﬁ,g(Ri“)}, «“« N8
whereL? ﬁ(]RC“r 1) it is the Lebesgue space associated with the Dunkl-Bessel trans- < >
form andg’ is the topological dual of the Silva space. We investigate their properties Page 3 of 44

such as the imbedding theorems and the structure theorems. In fact, the imbedding
theorems mean that fer> 0, u € I/I/'gSf‘V’W(IRii+ 1) can be analytically continued to Go Back

the sef{z € C?*! / | Im 2| < s}. For the structure theorems we prove thatfor 0,

=52 d+1 e . Full Screen
u € Wg % 5(RE™) can be represented as an infinite sum of fractional Dunkl-Bessel
Laplace operators of square integrable functigris other words, Close
u=3 T (~tup)y. journal of inequalities
el m! in pure and applied
mathematics

We prove also that the generalized Dunkl-Sobolev spaces are stable by multiplication

of the functions of the Silva spaces. As applications on these spaces, we study pesn e
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the action for the class of pseudo differential-difference operators and we apply the
theory of reproducing kernels on these spaces. We note that special cases include:
the classical Sobolev spaces of exponential type, the Sobolev spaces of exponential
types associated with the Weinstein operator and the Sobolev spaces of exponential
type associated with the Dunkl operators.

We conclude this introduction with a summary of the contents of this paper. In
Section2 we recall the harmonic analysis associated with the Dunkl-Bessel Laplace
operator which we need in the sequel. In Sectiowe consider the Silva space
G. and its dualg.. We study the action of the Dunkl-Bessel transform on these
spaces. Next we prove two structure theorems for the ggada’e define in Section
4 the generalized Dunkl-Sobolev spaces of exponential ngw(Ri“) and we
give their properties. In Sectichwe give two applications on these spaces. More
precisely, in the first application we introduce certain classes of symbols of exponen-
tial type and the associated pseudo-differential-difference operators of exponential
type. We show that these pseudo-differential-difference operators naturally act on
the generalized Sobolev spaces of exponential type. In the second, using the theory
of reproducing kernels, some applications are given for these spaces.
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2. Preliminaries

In order to establish some basic and standard notations we briefly overview the the-
ory of Dunkl operators and its relation to harmonic analysis. Main references are

[3,4,5,8,16, 17, 19, 20, 21].

2.1. The Dunkl Operators

Let R¢ be the Euclidean space equipped with a scalar progugtand let||z|| =

V (z, 7). Fora in RN\{0}, let o, be the reflection in the hyperplaré, c R?
orthogonal tay, i.e. forz € R,

(0.2)
I

Afinite setkR c R%\{0} is called a root system ®NR a = {a, —a} ando,R = R
for all « € R. For a given root systemk, reflectionso,,, « € R, generate a finite
groupW < O(d), called the reflection group associated with We fix aj ¢
RN\U,crHo and define a positive root systeRy, = {« € R | (o, 3) > 0}. We
normalize eaclv € R, as(«,«) = 2. Afunctionk : R — Con R is called a
multiplicity function if it is invariant under the action d#. We introduce the index

~ as
y=7k) =Y k).

acER

Throughout this paper, we will assume thaét) > 0 for all « € R. We denote by
w;, the weight function ofiR? given by

wr(z) =TT ez,

acR4

o) =2—2
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which is invariant and homogeneous of degteegand byc, the Mehta-type constant

defined by
-1
o — ( [ e lel Pt dx) .
]Rd

We note that Etingof (cf.q]) has given a derivation of the Mehta-type constant valid

for all finite reflection group.
The Dunkl operator§y, j = 1,2,...,d, onR? associated with the positive root
systemR and the multiplicity functiork are given by

Tif(z) = ﬁ(515) + Z k:(a)ajf(x) zafioga(x))

8l'j
aER4

, feC'RY).

We define the Dunkl-Laplace operatty, onR? for f € C?(R4) by

d

Apflw) =) T} f(x)

j=1

a2 Y o) ((TLk) S-Sl

a, ) (o, x)?

aER

where/A andV are the usual Euclidean Laplacian and nabla operatdis oespec-
tively. Then for eachy € R¢, the system

EU(I’,y) = ?/JU(IJJ), .] = 1a s 7d7
u(0,y) =1

admits a unique analytic solutioki (z,y), z € R¢, called the Dunkl kernel. This
kernel has a holomorphic extension@ x C¢, (cf. [17] for the basic properties of
K).
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2.2. Harmonic Analysis Associated with the Dunkl-Bessel Laplace Operator

In this subsection we collect some notations and results on the Dunkl-Bessel kernel,
the Dunkl-Bessel intertwining operator and its dual, the Dunkl-Bessel transform, and

the Dunkl-Bessel convolution (cf1p)).
In the following we denote by

e RIM =R x [0, +o0].

e r = (1‘1, ce ,xd,de) = ((I}/,l’d_H) S Rfﬁ_l.

e C.(R41) the space of continuous functions &fi*!, even with respect to the

last variable.

e CP(R¥*Y)  the space of functions of clag® on Re*!, even with respect to

the last variable.

e £ (R™)  the space of?>~-functions onR¢™!, even with respect to the last

variable.

e S.(R4*1)  the Schwartz space of rapidly decreasing function®6h, even
with respect to the last variable.

e D, (R¥1) the space of’-functions onR¢*! which are of compact support,

even with respect to the last variable.

e S'.(R¥*1) the space of temperate distributions®f*, even with respect to

the last variable. It is the topological dual 8f(R4*!).
We consider the Dunkl-Bessel Laplace operatqr; defined by
(2.1) Vo = (2, 7411) € R%]0, +00],
Dppf(x) = Dy f(2' 2a10) + Loy, [(@2a11), [ CHRMY),
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where /\; is the Dunkl-Laplace operator dR?, and £; the Bessel operator on

10, +-00[ given by

d? 26+1 d 1

08> ——.

Ly 5

B d9€(21+1 Td+1 dderl’
The Dunkl-Bessel kerne\ is given by
(2.2) Az, 2) = K(iv', 2)js(xas12411), (2,2) € R x CHHL

whereK (iz’, 2’) is the Dunkl kernel angls(x4+124+1) is the normalized Bessel func-

tion. The Dunkl-Bessel kernel satisfies the following properties:
i) Forallz,te C¥!, we have
(2.3) A(z,t) = A(t,2); A(2,0) =1and A(Nz,t) = Az, At), forall A € C.

i) Forallv € N1 2 ¢ R¥! andz € C¥*!, we have

(2.4) [DIA(z, 2)] < ||| exp(]]]||] Im 2]]),

whereD? = aylaﬁ and|v| = vy + -+ - + vy In particular
21 0251

(2.5) IA(z,y)| <1, forall z,ye€ R

The Dunkl-Bessel intertwining operator is the operaior; defined orC, (R¥)
by

(26) Rkﬁf(l’/, xd—i—l)

2F ﬁ‘i‘ 1 B Td+1 1
\/E'IE(B +‘1>$dff /0 (a1 = )2V f (@ )t waia >0,
= 2

f(xlv 0)7 Tgr1 = 07
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whereV, is the Dunkl intertwining operator (cfl1p]).
Ry s is a topological isomorphism frord, (R4™!) onto itself satisfying the fol-
lowing transmutation relation

(2.7) Nip(Ripf) = Rip(Dana f), forall f e E (R,
d+1

whereA, = Y 07 is the Laplacian ofR**".
j=1

The dual of the Dunkl-Bessel intertwining operaf®y, s is the operatofR; s
defined onD, (R¥™) by: Vy = (3, ya+1) € RY x [0, 00|,
/ 2l(B+1) Fa o gl /
(2.8) "Rus(f)y,y :—/ s —ya)" 2 Vi f (Y, s)sds,
kﬁ( )( d+1) ﬁr (ﬁ"’%) de( d+1) k ( )

where'V}, is the dual Dunkl intertwining operator (cf2()]).
"Ry 5 is a topological isomorphism fror, (R?+1) onto itself satisfying the fol-
lowing transmutation relation

(2.9) "Ris(Drsf) = Dapai("Repf), forall fe (R

We denote by} ;(R{"") the space of measurable functionsRit" such that

P

||f||Lgﬁ(Ri+l>=</R |f<x>|pdﬂk,ﬁ<x>dx) <400, if 1<p< oo,
+

. = ess su x)| < +o0
1l ey =50 sup /(@] < +oo,

wheredy, 5 is the measure ol@i+1 given by

d/ikﬁ(x/» Tiy1) = wk(xl)x?li’;ldx’dxdﬂ.
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The Dunkl-Bessel transform is given f@rin L}M(R‘fl) by

(2.10) Fop(NW yar) = [ J(@ zan) A=z, y)dugs(x),
R+
forall y = (y,yap1) € R
Some basic properties of this transform are the following:
i) For fin L} 5(RY),
(2.11) 170,80 e ey < N Fllpy qatny:

i) ForfinS.(R*!) we have

2.12)  Fpp(Lwsf)y) = —llyl*Fps(f)(y), forall yeR{
i)y Forallf € S(R¥*), we have

(2.13) Fop(F)y) =Foo "Rip(f)ly), forall yeR,

whereF, is the transform defined byt y € Ri“,

(2.14) F,()y) = / L F@e VD cos(zapyan)de,  f € DR,

iv) Forall fin L} ;(R{™), if 7p p(f) belongs taL; ;(R™), then

(2.15) fly) =muip /Rd+1 Foe(f)(x)A(z,y)durs(x), a.e.
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where

2
(2.16) i

m = .
S (G4 )

v) For f € S.(R4), if we define

fD,B(f) (y) = fD,B(f) (—y)’ Dunkl-Sobolev Spaces
Hatem Mejjaoli
then vol. 10, iss. 2, art. 55, 2009
(2.17) Fp,sFp,s = FpFp =mygld.
Title Page
Proposition 2.1.
Contents
i) The Dunkl-Bessel transfortfy, 5 is a topological isomorphism fro, (R*1) « b
onto itself and for allf in S, (R™1),
< >
2 _ 2
@18) [ @) = mis [ Fos(OF ) age 111 4
+ +
) Go Back
i) In particular, the renormalized Dunkl-Bessel transfofm- m,fﬁj-‘D,B(f) can Full Screen
be uniquely extended to an isometric isomorphismL@@(Ri“).
’ Close
By using the Dunkl-Bessel kernel, we introduce a generalized translation and a
convolution structure. For a functiohe S,(R?*!) andy € R%™ the Dunkl-Bessel journal of inequalities
translationr, f is defined by the following relation: in pure and applied
mathematics
Fp,p(ryf)(x) = Mz, y)Fp,s(f)(2). issn: 1443-575k
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If f € (R is radial with respect to théfirst variables, i.ef (x) = F(||2'||, z4:1),
then it follows that

@219) 7,f(e) = R | F(VIFTF TP T 2070,

\/x?lJrl + y3+1 + 2yd+1 >:| ([E,7 J]d+1),

By using the Dunkl-Bessel translation, we define the Dunkl-Bessel convolution prod-
uct f *p p g of functionsf, g € S.(R%™') as follows:

(2.20) f*pBg(r)= /R o T (F1)9(Y)dps(y).

+

This convolution is commutative and associative and satisfies the following:
) Forallf,g € S.(R™™), f *p 5 g belongs taS, (R%) and
(2.21) Fps(f *p.5 9)W) = Fo.(f) (W) Fp.5(9)(Y)-

ii) Let1 < p,g,r < ocosuchthatl +1 -1 =1.1f f € L} 4,(R") andg €
LZ,,@(Riﬂ) is radial, thenf xp 5 g € Lz,ﬁ(Riﬂ) and

(2.22)

| f *p.B gHLZ,ﬁ(Riﬂ) < HfHLz,B(RiH) ||g||LZ’ﬂ(Ri+1) .
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3. Structure Theorems on the Silva Space and its Dual

Definition 3.1. We denote by, or G.(R4*!) the set of all functiong in &,(R+1)
such that for anyx,p > 0

ePllzll |augp($)|
N, = S _—
P7h<90) z:ﬂ?ﬁrl ( h|“|,u! )

,u.ENUH'1
is finite. The topology ig. is defined by the above seminorms.
Lemma 3.2. Let¢ be inG,. Then for everyr,p > 0

epHxH Am SO €T
Non(g) = sup ( | A0( )|>.

wcrd+1 h™m!
meN

Proof. We proceed as in Proposition 5.1 df3, and by a simple calculation we

obtain the result. O

Theorem 3.3.The transforni,  is a topological isomorphism froi, onto itself.
Proof. From the relationsA ), (2.9) and Lemma3.2we see thatR . 5 is continuous

from G, onto itself. On the other hand, J. Chung et &l] lhave proved that the
classical Fourier transform is an isomorphism frgmonto itself. Thus from the

relation ¢.13 we deduce thafFy, 5 is continuous frong, onto itself. Finally since
G. is included inS,(R4*1), and.Fp p is an isomorphism frons, (R4+1) onto itself,
by (2.17) we obtain the result. O

We denote by’ or G’ (R4*1) the strong dual of the spack.
Definition 3.4. The Dunkl-Bessel transform of a distributiénin G. is defined by

(Fp.5(9),¢) = (S, Fpp()), o €.
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The result below follows immediately from Theoren®.
Corollary 3.5. The transforn¥, 5 is a topological isomorphism frog, onto itself.
Let7 be inG.. We define/\; g7, by
(Ap T, 0) = (1, N gtp), forall 1 € G,.
This functional satisfies the following property

Dunkl-Sobolev Spaces

(31) fD,B<Ak,ﬁ7—) - _||y||2fD,B(7—)- Hatem Mejjaoli
Definition 3.6. The generalized heat kerng}, ; is given by Vol 10:1ss. 2 art. 95, 2009
2¢k _ Lel2+1yll? .y )
r t,x, = e 4t A ——,— | ; Title P
k,ﬁ( y) P(ﬁ+1)<4t>7+ﬁ+g+l < \/2_t \/Q_t itle Page
T,y € R +>0 Contents
) + .
The generalized heat kerrig] ; has the following properties: « 4
Proposition 3.7. Letx, y in R andt > 0. Then we have: < 4

Page 14 of 44

) Tus(tiag) = [ exp(=HIEIP)AG A3 ).

+ Go Back
.. Full Screen
i) [, Tealt.og)dup(o) = 1
Ry Close
iii) For fixedy in R4, the functionu(z, t) := 'y 5(t, 7, y) solves the generalized journal of inequalities
heat equation: in pure and applied
9 mathematics
Ay pu(z,t) = au(z,t) on R%x]0, +00]. issn: 1443-575k
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Definition 3.8. The generalized heat semigro(ii;. 5(t)):>o is the integral operator
given forf in L? ,(RT™) by

[ st ) @)ty it 20,
R+

f(x) if t=0.

Hip(t)f(x) =

Dunkl-Sobolev Spaces

From the properties of the generalized heat kernel we have

Hatem Mejjaoli

f *D.B Pt(f) if ¢>0, vol. 10, iss. 2, art. 55, 2009
(3.2) Hip(t)f(x) := .
f(z) if t=0, :
Title Page
where
(v) 2c; - ”ZHQ Contents
p = to.
" T(8 + 1)(4t)rH8+e+ « »»
Definition 3.9. A functionf defined ori[%cfrl Is said to be of exponential type if there < >

are constants;, C' > 0 such that for every € R
Page 15 of 44

|f (2)] < exp k|||

Go Back
The following lemma will be useful later. For the details of the proof we refer to Full Screen
Komatsu PJ:
) ) Close
Lemma 3.10. For any L > 0 ande > 0 there exist a functiom € D(R) and a
differential operatorP (<) of infinite order such that journal of inequalities
r in pure and applied
mathematics
. < _ = .
(3.3) suppv C [0,e], |v(t)| < Cexp ( t) , 0<t<oo; o tuiasre
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d s d\" Lk
(34) P (E) = Zak (%> s |ak’ S OIW’

(3.5) P (%) o(t) = 6+ w(t),

wherew € D(R), suppw C [5,€].

Here we note thal’(A ) is a local operator wheré\, 5 is a Dunkl-Bessel
Laplace operator.

Now we are in a position to state and prove one of the main theorems in this
section.

Theorem 3.11.If u € G, then there exists a differential operat(%) such that for
someC' > 0andL > 0,

d - d\" L
Pl—)= = <02
(dt) 2 an (dt) o aal = O7,

n=0

and there are a continuous functigrof exponential type and an entire functibrof
exponential type ifR%"! such that

(3.6) u=P(Ag)g(x)+ h(x).
Proof. Let U(z,t) = (uy, 'k s(t,x,y)). Sincep, belongs tog. for eacht > 0,
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Hereu € G, means that for some > 0 andh > 0

|0%¢(x)| exp k|||
hlela! ’

(3.8) |(u, ¢} < C'sup ¢ € G..

By Cauchy'’s inequality and relation&.¢) and (3.8) we obtain, fort > 0

|U(l’, t)| < 04 exp k' |:| |ZE|| + i+ %:| Dunkl-Sobolev Spaces

Hatem Mejjaoli

for someC’ > 0 andk’ > 0. If we restrict this inequality on the strip< ¢ < ¢ then vol. 10, 1ss. 2, art. 85, 2009
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1 .
|U(w,t)|§C'eka‘{||x||—l—¥} , O<t<e Title Page
for some constants' > 0 andk > 0. Now let Contents
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and Full Screen
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Now choose functions, w and a differential operator of infinite order as in Lemma
3.10 Let

(3.12) Ulz,t) = / U(x,t+ s)v(s)ds.
0

Then by takings = 2 andL > k in Lemma3.10we have
(3.13) U(z,t)| < C"expk(||z]] +1t), t>0.
Therefore[7(z, t) is a continuous function of exponential type in

R x [0, 00[= {(a:,t) Lz e R ¢ > o}.
Moreover,U satisfies
(3.14) (0r — D p)U(z, ) =0 in - REX]0, 00,

Hence if we sey(z) = U(x,0) theng is also a continuous function of exponential
type, so thay belongs taj!.
Using (3.5 in Lemma3.10, we obtain fort > 0

P(—Ak,g)U(:c,t) =P (—%) U(x,t)
(3.15) =U(z,t) + /OO Uz, t+ s)w(s)ds.

If we seth(z) = — [[7U w(s)ds thenh is an entire function of exponential
type. Ast — 0+ (3.15 becomes
u=P(=Ap)g(z) + h(zx)

which completes the proof by replacing the coefficient®f P by (—1)"a,,. O
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Theorem 3.12.Let U(x,t) be an infinitely differentiable function iRZ™ x]0, oo
satisfying the conditions:

) (0; — DApp)U(x,t) = 0in R x]0, ool

i) There exisk > 0 andC > 0 such that
1
(3.16) |U(x,t)|SC’expk<||xH+¥>,0<t<€, z € REH

for some:= > 0. Then there exists a unique elemerg G’ such that

U(I’,t) = <uy: Fkﬂ(t7 xay»? t> 0
and
lim U(z,t) =u in G..

t—0t

Proof. Consider a function, as ir8(12)

Ulx,t) = /OOO U(x,t+ s)v(s)ds.

Then it follows from ¢.19, (3.14) and .15 thatU (z, t) andH (z, t) are continuous
onR%* x [0, oo[ and

(3.17) Uz, t) = P(— Oy g)U(x,t) + H(z,t),
where -
H(z,t) = —/0 Uz, t+ s)w(s)ds.
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Furthermoreg(x) = U(x,0) andh(z) = H(x,0) are continuous functions of expo-

nential type orR%™. Defineu as
u=P(=Arp)g(x) + h(z).
Then sinceP(—A 3) is a local operator, belongs taj, and

lim U(z,t)=u in G..

t—0t

Now define the generalized heat kernelstfor 0 as

Amwzwmﬁmmzf 90 Tes(t, 2, y)dpn ()

RIH

and
Bat) = (h s p)(a) = [ | B)Pealt )i s(w)

]R+
Then it is easy to show that(x,t) and B(z, t) converge locally uniformly tg(z)
andh(zx) respectively so that they are gontinuouisfﬁl x [0, 00|, A(z,0) = g(z),
andB(z,0) = h(z). Now letV (z,t) = U(xz,t) — A(x,t) andW (x,t) = H(z,t) —
B(z,t). Then, sincgy andh are of exponential typé/(-,¢) andW (-, t) are con-
tinuous functions of exponential type ahdz,0) = 0, W (z,0) = 0. Then by the
uniqueness theorem of the generalized heat equations we obtain that

U(m,t) = (g *D.B pt)(ﬁ)

and
H(z,t) = (h *D,B pt)(x)‘
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It follows from these facts and(17) that

U *pp Pt = [P(—Ak,ﬁ)g+h *D,B Pt

= P(— Ly )U(t) + H(-, 1)
= U(-,1).

Now to prove the uniqueness of existence of suehg. we assume that there exist
u,v € G such that

Uz, t) = (u *D.B pt)(a:) = (v *D.B pt)(a:).
Then
Fp,s(u)Fp(p:) = Fps(v)Fp,B(D:)

which implies thatFp z(u) = Fp p(v), sinceFp p(p;) # 0. However, since the
Dunkl-Bessel transformation is an isomorphism we have v, which completes
the proof. n
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4. The Generalized Dunkl-Sobolev Spaces of Exponential Type

Definition 4.1. Lets be inR, 1 < p < co. We define the spad&;”, ,(RT™) by
{u e G eflflFy g(u) e L%B(R‘fl)}.

The norm orV3?, ;(RY) is given by

B =

lullwge, , = (mm / eps'5”|fD,B<u><§>|pduk,ﬁ<£>>

+

For p = 2 we provide this space with the scalar product
(4.1) <U,U>W5»2M = mk,ﬁ/ ) N Fp 5 (u) () Fp,p(v)(€)durs(€),
*, K, Ri 1

and the norm

(4.2) HUHIZ/VSZ’kg = <U7U>W5;%k’ﬁ~

Proposition 4.2.

i) Letl < p < +oo. The spacéV;”, ;(R{"") provided with the nornﬂ-||W5,pM

is a Banach space.

i) We have
Wl o(RE) = L o(RE™).

i) Letl <p < +ooandsy, s, in R such thats; > s, then

Wa. s (RET) = WL 5(RET).
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Proof. i) It is clear that the spacé?(RE™, erslléllayy,, 5()) is complete and since

Fp, 5 is an isomorphism frong’, onto itself Wg’pk (Rd“) is then a Banach space.
The results i) and iii) follow immediately from the definition of the generalized

Dunkl-Sobolev space of exponential type. O

Proposition 4.3. Let1 < p < 400, andsy, s, s, be three real numbers satisfying
s1 < 8 < s9. Then, for alle > 0, there exists a nonnegative constantsuch that
for all w in Wg’pk B(Ri"'l) Dunkl-Sobolev Spaces

Hatem Mejjaoli
(4.3) HUHWE*”kﬁ < CEHUHWg’ZB + 5HUHW55’§§- vol. 10, iss. 2, art. 55, 2009

Proof. We consides = (1 — t)s; + tsqo, (With ¢ €]0, 1][). Moreover it is easy to see

Title Page
t
HUHWSPM - HU| gslp HuH S2£ﬁ Contents
Thus « "
1—t t
llwgs, , < (™ llulluzp ) (ellulluzze ) . >

& Page 23 of 44
< el + <llullwgz, o

, Go Back
Hence the proof is completed for. = ¢ 1. [
Full Screen
Proposition 4.4.For sinR, 1 < p < coandm in N, the operatoiA}; is continuous o
’ ose

from Wg?, 5(R{) into W5 2% (RGH) for anye > 0.
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Proof. Letu be inW3?, ,(RT™), andm in N. From (3.1) we have

/d+1 cPs=o)ll€ll |~7:D,B(AZ?5U) (5) |pdﬂk,ﬁ(f)
R+

— /Rd+1 ep(s_a)HéHH5||2mp‘«/TD7B(U)(5)‘pdﬂkﬁ(f)-

Dunkl-Sobolev Spaces

AS SUp g+ ||€]|>mPe=liEll < oo, for everym € N ande > 0

Hatem Mejjaoli
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/ B ePCNEN Fpy o (AT ) (€)[Pdpun o (€)
R

Title Page
< [ N Ep p()(©) Piia(€) < +ox.

RIH Contents
ThenA7,u belongs toV; ;% (R{™), and 4 »
HAZ,LﬁUHW‘;;Z% < HUHWS*"M 4 >
[l Page 24 of 44

Definition 4.5. We define the operatdr A\ 5)z by vz € R, Go Back

1 Full S
(= L) >ule) = mus / oo M@ ONIENFo () )dhs(€). ue SR, skl
RYH Close

Proposition 4.6. Let P((—Ay5)7) = 3.,.cn m(—Lks) % be a fractional Dunkl-
Bessel Laplace operators of infinite order such that there exist positive conétants
andr such that
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Letl < p < +ooandsinR. Ifan element isin W57, ;(R%), thenP((— Ay )2 u
belongs toV; % (R}"), and there exists a positive constaisuch that

1P((= L) ullysp, < Cllullwge, -
Proof. The condition {.4) gives that
IP(|€]))] < C exp(r[[€]]).

Thus the result is immediate. O]

Proposition 4.7. Let1 < p < 400, ¢, s in R. The operatoexp(t(—/\, 3)2) defined
by

Vo € RE, exp(t(—App)? u(z)
= e [ MO Fo o0 ieald), wE G

is an isomorphism frorfl’;?, ;(R{™) onto W50 (RY).

Proof. Foru in Wg", ;(R{"") itis easy to see that

|l exp(t(= L) 2ullyys-sn = llullwgr, .

and thus we obtain the result. O
Proposition 4.8. The dual of¥5%, ;(R%™") can be identified a8/ *7;(R4™). The
relation of the identification is given by

(4.5) (w,v)es =mug | Fpp()(€)Fpp©)(€)durs&),

d
RY

with w in W52, ,(RT) andv in W5 %25 (REH).
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Proof. Let u be in W%, ;(RY™) andv in W5 %2,(RTT). The Cauchy-Schwartz
inequality gives

[, 0) sl < Nullsz ol
Thus forv in Wg‘Sfﬁ(RdH) fixed we see thatt — (u,v) g is a continuous lin-

ear form onlVy M(Rd*l) whose norm does not exce&ﬁd“wfn . Taking the
ug = Fply (eI Fp p(v)) element of g2, ;(RT), we obta|n<u0,v>k,5 =

Thus the norm oft — (u,v)g 5 is equal tOHUHW—sz and we have then an
isometry:
Wolins (RET) — (W52 s(RE).
Conversely, letl. be in (Wgsfkﬁ(Ri“))'. By the Riesz representation theorem
and ¢.1) there existsv in W%, ;(R%) such that

L(u) = (u, w)yys2

g*ﬂk‘rwg

= Mks /R o €D 5 () (€)Fp 5 (w)(€)dprs(€), Torallu € W7, 5(RE).

If we setv = F;' (eII1F 5(w)) thenw belongs tolW; *75(R1™) and L(u) =
(u,v)pp forall uin Wy kﬁ(Ri“), which completes the proof. O

Proposition 4.9. Lets > 0. Then every: in Wg (Rd“) can be represented as

an infinite sum of fractional Dunkl-Bessel Laplace operators of square integrable

functiong, in other words,

m

S m
=y —(=Dkp)2g.
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Proof. If win W, %2;(R%™) then by definition

e N Fp p(u)(€) € L} 4(RE),
which Propositior?. 1ii) implies that

Fp p(u)(§)

FD7B(9)(§):Z NﬁugHm

2 d+1
e L,gﬁ(R;r ).
Hence, we have

Foalw) =Y llel"Foale). i G

meN

=2 %fD,B (=2kp)%g), in G

meN

This completes the proof. O

Proposition 4.10.Let1 < p < +oo. Everyu in Wg*, ;(R7™) is a holomorphic
function in the strip{z € C¥™, ||Im z|| < s} for s > 0.

Proof. Let
ue) =mup [ MO a0 duns(©), 2= iy

From (2.4), for eachu in Ne+! we have

D2 (A, Fpp()(©)) | < g™l (w) (©)]
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On the other hand from the Cauchy-Schwartz inequality we have

[ 1, )€ €)
R4

1
q
alul all€lllyll—s) s
< </]Rd+1 |€]]7 e dﬂk,ﬂ(f)) HuHngjm-

+

Since the integral in the last part of the above inequality is integrablg fif< s, the
result follows by the theorem of holomorphy under the integral sign. O

Notations. Let m be inN. We denote by:

e & (R%1) the space of distributions dR% with compact support and order
less than or equal te.

o & om(RET) the space of distributions in £/, (RY) such that there exists a
positive constant’ such that

| Fp.p(u)(€)] < CemlEl.
Proposition 4.11.
1) Letl < p < +o0. For sin R such thats < —m, we have
5éxp,m<Ri+1) C Wéfk,ﬁ<RiH)-
i) Letl < p < +o00. We have, fos < 0 andm an integer,

En(RE) Wy (RED)
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Proof. The proof uses the same idea as Theorem 3.123)f | ]

Theorem 4.12.Lety be ing,. Forall s in R, the mapping: — u from Wgsfkﬂ(Ri“)
into itself is continuous.

Proof. Firstly we assume that> 0.
It is easy to see that

o0

(2s)
ol <3

‘ Dunkl-Sobolev Spaces
[|v] |2
j' s (]R‘”l) Hatem Mejjaoli
=0

vol. 10, iss. 2, art. 55, 2009

where||- |HS S(REHD) designates the norm associated to the homogeneous Dunkl-Bessel-
Sobolev space defined by

Title Page
lolEyg ey = [ NEIP0.800 O P ale) Cortents
+
On the other hand, proceeding as in Proposition 4.11df e prove that ifu,v 4 »
belong toH,jﬁ(Rd“) N LR, s > 0 thenuw € H; 5(RYH) and < >
Page 29 of 44
ol sy < © [l e gy el oty + 1ol e oyl g g 2ge 290
Thus from this we deduce that fer 0 Go Back
28 Full Screen
2
U 5 <
lully, Z ey —
<C [IIQOHQOO paeny Ul sz 1[ull? o garn 10][2 02 } < +o0. journal of inequalities
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For s = 0 the result is immediate.
Fors < 0 the result is obtained by duality. O
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5. Applications

5.1. Pseudo-differential-difference operators of exponential type

The pseudo-differential-difference operatbfr, /s 3) associated with the symbol
a(z,§) := A(x, —|[¢]|?) is defined by

(5:1) (Al ) ) = muy [ A &ale. o nu) i s(€), w € G, Ourke- Sl Spacs

Hatem Mejjaoli

I. 10, iss. 2, art. 55,
wherea(z, £) belongs to the class/ Yol 10,155- 2, 8rl. 55, 2009

exp!

r > 0, defined below:

Definition 5.1. The functioru(z, €) is said to be inS’_ if and only ifa(z, ) belongs

exp

to O (R x R4+1) and for each compact sét ¢ R4 and eachy, v in N#+1, Vi Fege
there exists a constanty = C, , x such that the estimate Contents

|D¢ Dya(z,§)| < Ck exp(r|[§][), forall (z,8) € K x REH 4 »
hold true. < >
Proposition 5.2. Let A(xz, Ay, g) be the pseudo-differential-difference operator as- Page 30 of 44
sociated with the symbelz, §) := A(z, —||£]|?). If a(x,§) € SL, thenA(z, Ay p) Go Back
in (5.1) is a well-defined mapping . into &, (R*1).

Full S
Proof. For any compact set’ C R‘ﬁl, we have o Sereen
Close

a(e, )| < Ci exp(r||¢]]), forall (z,€) € K x R,
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2

< COllullys2 | (/Rd“ 6_2(S_T)|§Hdﬂk,ﬁ(f)>
+

is integrable fos > r. This prove the existence and the continuity &fx, A, g)u)(z)
forall z in Rdjl. Finally the result follows by using Leibniz formula. O

Now we consider the symbol which belongs to the clﬁgﬁmd defined below:

Definition 5.3. Letr, [ in R be real numbers with > 0. The functioru(z, §) is said
to be inS.. ., ifand only ifa(z,€) is in C(R*! x Ré*1), radial with respect to
the firstd + 1 variables and for eact. > 0, and for eachy, v in N¢*1, there exists
a constanC = C, ,, such that the estimate

|DEDYa(x, )| < CLWM plexp(r[[€]| — 1]|2|])
hold true.

To obtain some deep and interesting results we need the following alternative
form of A(z, Ay ).

Lemma 5.4. Let A(x, A 3) be the pseudo-differential-difference operator associ-
ated with the symbel(z, £) := A(z, —|[¢]1%). I a(w, ) isin S, 0 thenA(z, Ay p)
in (5.1) is given by:

(A(z, Arg)u) (x)

=M g /R PRSCRY [/R(HITW (F.5(a) (M) () Fp.5(w) (0)dpa, 5 (n)| dpr (S

for all u € G, where all the involved integrals are absolutely convergent.
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Proof. When we proceed ad(] we see that for all. > 0 there exist”' > 0 and
0 < 7 < (Ld)~! such that

(5.2) \Fp.p(a)(& n)| < Cexp(r|n|| — 7 |]]).
On the other hand sinaein G,, we have
|Fp,s(u)(n)] < Cexp(—t|n]|), Yt > 0.

Thus from the positivity for the Dunkl-Bessel translation operator for the radial func-
tions we obtain

|70 (Fp.5(a)(-,n) (€)Fp5(w) ()] < Cexp(=(t —r)[[nl)7—y(exp(= |I-]))(€)-

Moreover it is clear that the function— exp(—(t — ) ||n||)7—, (exp(—7 ||-]]))(&)
belongs taL} 4(R{™) for t > r, 7 > 0. So that

[ 1 Fon(@) ) O ) 1) di )

<c [ ep(=tt=r) lnl)(exp(= |- D)€ s(n)
+

The right-hand side is a Dunkl-Bessel convolution product of two integrable func-

tions and hence is an integrable functionRft". Therefore the function

£ Tn(Fp,5(a)(-,1)(§) Fp,5(w)(n)dp,s(n)

RIH
isin Li,g(Riﬂ)- Applying the inverse Dunkl-Bessel transform we get the resuilt.

Now we prove the fundamental result
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Theorem 5.5. Let A(x, A\; 3) be the pseudo-differential-difference operator where

the symboh(z, £) := A(xz, —||¢|[?) belongs taS.; ... Then for allu in G, and all
sinR

(5.3) 1A, Axg)ullwge, , < Collullyreen

Proof. We consider the function

Dunkl-Sobolev Spaces

Us(f) — esliéll /Rd+l Ty (}_D,B(a)(',77))(f)fD,B(U)(n)d/Lk,ﬁ(n), scR. Hatem Mejjaoli
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Then invoking £.2) and .19 we deduce that

Title Page

(5.4) |U5(f)| = /Rd+1 exp((r * S) ||77||)|~7:D,B(U)(77)| Contents
x T (exp(—(7 = |s]) [lyl])) (€)dpws(n), s €R. “ dd
< >

The integral of §.4) can be considered as a Dunkl-Bessel convolution product be-

tween (&) = exp(—(7 — [s]) ||£]]) andg(§) = exp((r + 5) [[€]D)|Fp,5(u) ()] Itis Page 33 of 44
clear thatf is radial and belongs tﬁ,lw(Ri“) for 7 > |s|, on the other hand since

i i P d+1 s s TP d+1 Go Back

Fpp(u)in g, thengin Ly ;(RY™). Hencef xp p gisin Ly ,(R{T) and we have
Full Screen

|/ *p,5 gHLiﬁ(Ri+l) < |’f||L}c’ﬁ(R‘_f_+1)HgHLi’ﬁ(Rfrl) - CSHUHW;:;% Slse

Thus . ; »
journal of inequalities
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5.2. The Reproducing Kernels

Proposition 5.6. For s > 0, the Hilbert spacéVgSfW(Ri“) admits the reproducing
kernel:

Orp(x,y) = mip /M Az, A (—y, e ¥lldpy 5(€),

RY

that is:

Dunkl-Sobolev Spaces
i) For everyy in R{™, the function: — ©y, 5(x,y) belongs toV;?, ,(RE). Hatem Mejjaoli

.. . . vol. 10, iss. 2, art. 55, 2009
ii) Foreveryfin W3? ,(RT™) andy in R, we have

<fa @k,ﬁ(Uy»Wéf,kﬂ = f(y)

Title Page
Proof. i) Let y be inR%™. From @.5), the function Contents
£ A(—y,f)e‘2‘9|‘5” <« 44
belongs toL} ,(R™) N L 4(RG™) for s > 0, then from Propositior. 1 ii) there 8 2
exists a function imiﬁ(Rdjl), which we denote by, 5(-, v), such that Page 34 of 44
(5.5) Fo.5(Ors( 1)) (§) = A(—y, eIl Go Back
Thus®y, s(x,y) is given by Full Screen
Close
Ona(e9) =mes [ | A OA-p. e dpea(6).
Ry journal of inequalities
i) Let f be inWg?, ;(RY™) andy in RY™. From ¢4.1),(5.5) and .15 we have in pure and applied

mathematics
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Proposition 5.7.
) Letf being.. Thenu(z,t) = H;5(t) f(2) solves the problem
(Dkp— 2)u(z,t) =0 on RE'x]0,00]
ii) The integral transforn; s(¢), ¢ > 0, is a bounded linear operator from

W2, s(REM), sinR, into L7 4(R{™), and we have

He st f ||z ery < e 1fllwge, -

Proof. i) This assertion follows from Definitioi.8 and Propositiors. 7 iii).
ii) Let f be intsfkﬂ(Ri“). Using Propositior?.1ii) we have

[ H,5(t )f|| Sy = M Bl Fp,s(Hes(t) f )||igﬁ(Rd++1)‘

Invoking the relation shipsZ(Z]) and (.2) we can write

2 _
M1 ooy = s [

d+1
RY

e~ 2IEl” \Fp,5(f) (&) Pduns(E).

Therefore
1Hes() fllz ety < ¥ [ fllyps2

Gurk,B
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Definition 5.8. Letr > 0,¢ > 0 ands in R. We define the Hilbert spadg”, ,(R{™)
as the subspace oF;*, ;(R7™) with the inner product:

o9z, =1 Dwez, +Hes(O)f, Hep(0)g) 2 gery, fr9 € W5l s(REH).
The norm associated to the inner product is defined by:

2 - 2 2 Dunkl-Sobolev Spaces
Wz, p = W Mgz, , WP es Dl ey

vol. 10, iss. 2, art. 55, 2009

Proposition 5.9. For s € R, the Hilbert spacellgfw(]l%i“) admits the following
reproducing kernel:

P (Qf ) —m A(l’, f)A(—% f)dﬂk,ﬁ(f) rilpes
Y TG | T reellEl ¢ e 2EE Contents
¢
< >
Proof. i) Let y be in]Ri‘fl. In the same way as in the proof of Propositioai), we < >
can prove that the function— P,(x,y) belongs tal.? 5(]1%1“) and we have
’ Page 36 of 44
(56) FD,B (PT‘('a y)) (5) = 7’@25H§|| + €—2t\|§|\2 . Go Back
On the other hand we have Full Screen
Close
(5.7) Fop(Hrst)(Pr(y))(E)
_ o 2 ) d+1 journal of inequalities
exp(~ll€]")Fo.a (P ) (€), forall & e RYM. O o
mathematics
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Hence from Propositiof.1ii), we obtain

2 —
a0y agony =i |

RGH
C o—2t[€]12
SﬁAmzﬂwWw@<W-
i
Therefore we conclude th@®, (-, y) || < oc.
Gx,k,8
i) Let f beinHj*, ;(RYT) andy in RY. Then
(58) <f7 PT(U:U»H;’:kﬂ =rl +127
where
I = (f, B:(-,y))wz2  and

Gx,k,B
L= (Hip(t)f, Hip (OB y)) 2 ey
From (5.6) and ¢.1), we have

I = s /d e F D, (£ Ay, O)dpr5(&)
RYH

r@25||fH —+ e_2t|‘§||2

From (6.7) and €.6) and Propositior2. 1ii) we have

I (B, ) )| P o(€)

7“@23”5H —+ 6_2'5”5”2

I = muy /d 672”'5”2?&3(]0)(5)‘/\(97g)dﬂk,ﬁ(g)'
R4

The relations%.8) and ¢.15 imply that
(f, Pr('vy»ng’k,ﬁ = f(y).
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5.3. Extremal Function for the Generalized Heat Semigroup Transform

In this subsection, we prove for a given functipin L7 ;(R7™") that the infimum of

{PIF I +1lg = Has@F I, sy, £ € W37 4(RED ]

is attained at some unique function denoted’by called the extremal function. We
start with the following fundamental theorem (ci]{ 18)).

Theorem 5.10.Let Hx be a Hilbert space admitting the reproducing keri&lp, q)
on a setk and H a Hilbert space. Lel. : Hx — H be a bounded linear operator
on Hy into H. Forr > 0, introduce the inner product it/ - and call it Hx, as

(1, fo) b, = v (f1, fo)mpe + (Lf1, Lf2)m
Then

i) Hg, is the Hilbert space with the reproducing kerngl.(p,¢) on E which
satisfies the equation

K(q) = (rl + L'L)K.(-,q),
whereL* is the adjoint operator of. : Hy; — H.

i) Foranyr > 0 and for anyg in H, the infimum
: 2 2
nf {7 + 1L = 9l |

is attained by a unique functiofy, in Hy and this extremal function is given
by
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We can now state the main result of this subsection.

Theorem 5.11.Lets € R. For anyg in Lzﬁ(Ri“) and for anyr > 0, the infimum

(5.10) R GV e R OT AT

2
FEWS ) sRE

is attained by a unique functiofy , given by

Dunkl-Sobolev Spaces

Hatem Mejjaoli
(5.11) frg(x) = /d+ 9(W)Qr(z, y)dpk 5(y), vol. 10, iss. 2, art. 55, 2009
R4
where Title Page
(5.12) Qr(if, y) = Qr,s(ﬂfa y) Contents
e I A (2, ) A(—y, &)
— ’ ’ 44 44
— ks /RM reBel 4 zmar . Wes():
+

< >
Proof. By Proposition5.9 and Theoren®t.10ii), the infimum given by $.10) is
attained by a unique functiofy ,, and from §.9) the extremal functiorf;: is repre-
sented by Go Back

f:,g(y) = <g7Hk,5(t)(Pr('a y>>>Liﬁ(Ri+l)a y e Rfljl?

Page 39 of 44

Full Screen
whereP, is the kernel given by Propositicn9. On the other hand we have .
Hi (1) () journal of inequalities
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Hence by §.6), we obtain
exp(—t[|¢][*)A(z, A(—y, §)

Hk:,ﬁ(t) (PT(" y)) (:E) = Mk R+

= Qr(xvy)'

re2slléll 4 e—2tlEl?

This gives £.12).
Corollary 5.12. Lets € R, d > 0 andg, gs in L} 5(R{") such that
lg — gdHLi,ﬂ(Riﬂ) <.
Then 5
||fr,g - fr,g(;HWéf’kﬁ < ﬁ
Proof. From (.12 and Fubini’s theorem we have
e IEI° Fp 5(9)(€)

re2slléll + e—2tllgl1?

(5.13) Fpp(fr,)(€) =

Hence

o €I Fp, (g — g5) (€
fD,B(fr,g - fr,ga)(f) = ‘ T€28|§|Di(j_2t|izé|z( )

Using the inequalityfx + y)* > 4xy, we obtain

1
PN Fp sy = £ )@ < 11 Foslg — 95) O
This and Propositiod.1ii) give

2 Mg, 2
||f:,g - f:,g,;Hwéfkﬁ S 4r ||fD,B(g - gé)HLiﬁ(RiJrl)

1 2
4_7““9 - g(SHLiﬁ(RiJrl))

IA
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from which we obtain the desired result.
Corollary 5.13. Lets € R. If fisin W% ,(RY™) andg = H;,4(t) f. Then

£y = Flyee, =0 asr—0,
Proof. From (3.2), (5.13 we have
Fo.s(f)(€) = exp(t][€]]*) Fp,p(9)(€)

and ,
e I Fp 5(9)(9)(€)

TQQSH§|| + e*2t||§H2

Fop(fr,)(€) =

Hence

) —re2slléll F B
fD,B(fr,g — €)= ::%HEII _|_D€—B2(t||§>l(2 )

Then we obtain

1620 = lga,, = [ €O P o)

with 2065]1¢]]
hris(§) = (re2sliEll 4 e—2tligl?)2”
Since
ll_{n hris(§) =0
and

s (§)] < 628“&'7
we obtain the result from the dominated convergence theorem.
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