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ABSTRACT. In this present paper, we introduce a new and simple integral modification of the
Meyer-Konig and Zeller Bezier type operators and study the rate of convergence for functions
of bounded variation. Our result improves and corrects the results of Hégprox. Theory
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1. INTRODUCTION

For a function defined ofp, 1], the Meyer-Konig and Zeller operatof3,, n € N [6] are
defined by

(1.1) Zmnk ( ik),xe[o,u,

where
M (2) = ( R )x’“(l—zz)”

The rates of convergence of some integral modifications of the opefatdrs (1.1) were discussed
in [1] — [5] and [7]. Recently, Zend [8] generalized the operatprs (1.1) and its integral modifi-
cation and estimated the rate of convergence for functions of bounded variation. We introduce
a new generalization of the Meyer-Konig-Zeller operators for functions definé@l ohas

(1.2) B (f, ) ZQM /nk(t)f(t)dt,xe[o,u,
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2 VIJAY GUPTA

wherea > 1,
- (G~ (5 )
j=k+1
and
k)! ..
b (1) = %tk(l —1)

For further properties o@ﬁf‘,ﬁ (x), we refer readers to [8]. Actually, the main purpose in in-
troducing these operato.Z) is that some approximation formulag,.forn» € N become
simpler than the corresponding results for the other modifications considered in [8].=Far
the operatorg (1]2) reduce to

By (f,x) Zmnk / nk (1) f(t)dt.

In the present paper, we study the behaviouBgf, (f, x) for functions of bounded variation
and give an estimate on the rate of convergence for these new integrated Meyer-Konig-Zeller-
Bezier operators. In the last section, we give the correct estimates for some other generalized
Meyer-Konig-Zeller type operators considered.in [2], [7] and [8].

2. AUXILIARY RESULTS
In this section we give certain results, which are necessary to prove the main result.
Lemma 2.1.[7]. Forall k,n € N, z € (0, 1], we have

1
\V 2ent’

Mk (x) <

where the constan% is the best possible.

Lemma 2.2. For r € N° ( the set of non negative integers ), if we define

B (t =), z) E:n%k L/lnk(w(r—xfdu

then

4 2(1 —z)?

B ((t=2)%,2) < n—1 (-1 (n-2)

Proof. Pute, () = 2", r =0,1,2,.... The moments of the operatak, , / are given by

Zm”k +k)1')B(k+r+1 n),
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whereB is the Beta function. Obviousl,, ;e° = ¢° = 1.

B _$nm n+k—1 ka
By (t,x) = (1 )}2( L ) (

—~ n+k+1)
o (b k—2\ o(k+1) (n+k—1)
2<1_x)kzzo( k—1 >x ko (nt+k+1)

n+k—1 k+1 2
1 —
k >x n+1

Next,
e e N s
<Oy b sy ke
+2§<”+:!—3)!xk
S(l_x)n{i(n—i_z_l)xk+2+(nfl)§(n+l]z—l> k+1

Combining these, we get
Bya ((t — ZB)2 ,:E) = B (t2, x) —21B,; (t,z) + 2°
< 4x N 2(1—2)* |
“(n—=1) (n—1)(n-2)

In particular, given any\ > 4 and anyz € (0, 1), there is an integeN (), z) such that for all
n> N (A x)

B ((t— z)? ,x) < )7\1_:6

Lemma 2.3. Forall = € (0,1] andk € N, there holds

Q) (x) < ampy (x) < ——

Proof. It is easy to verify thafa® — b*| < ala —b|, (0 <a, b <1, a > 1). Then by Lemma
[2.7, we obtain

Q) (x) < ampy (z) < —
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Lemma 2.4.LetK,, . (z,t) = > 2, fo‘,i () bpy (t),and X > 4, n > N (A, z) then

v A
(21) )\n,a <x7y) = / Kn,a (Zﬂ,t) dt < LQ, 0< y<uw,
0 n(z—y)
1
(22) - )\n,oc (x,y) = / Kn,a (I7t) dt S a—)\xga T <z S 1.
z n(z — ZL‘)

Proof. We first prove[(2.]1), as follows

Yy Yy 2
/Kn,a(x,t)dtg/ Koo (,1) =D

0 0 (ZB—y)
1

< B ((t— z)? ,T)

(x—y)’
B ((t— z)? , )
IR
a\x
<
n(z—y)
by Lemmd 2.2. The proof of (2.2) is similar. O

Lemma 2.5.[8, p. 5] Forz € (0,1), we have

1 )
2 (@) =3 S 5o

nT <k

11—z

3. MAIN RESULT
In this section we prove the following main theorem

Theorem 3.1. Let f be a function of bounded variation dfi, 1], & > 1. Then for every
z € (0,1)and\ > 4 andn > max {N (A, z), 3}, we have

B () = |y @)+ 2577 )|

r+1=2
1[a?+a—2 a } (2Xa + 7) < :
<3 + z+)— f(z—)|+ )
<5 | | I - f e+ >V

where

fO) —fla+), z<t<1

and\/’ (g.) is the total variation ofy, on|[a, b).
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Proof. Clearly

(3.1)

B (f0) = | g )+ 7 )|

Oé—1>’_ |f (z4) — f (z—)]

<
- a+1 2

B (sen (t— 2) 2) + ( + B (927

First, we have

Bn.o (sgn (t — ) ZQ (/ (t)dt—/oxbmk (t)dt)

- Z Q@) ([ burwai—2 [y

—2 Z Q) (x / x (t) dt.

Using Lemml, Lem@.S and the fact ﬂié;fzo M j (@ f b, i (t) dt, we have

Bua(sgn(t—z),2) =1— 22% (1 - X;mna (:1:))
— 142 ; Q) (x) (2; My <x)>
< -1+2a gmmk (z) Z;mn,j (z)

k=0

=—-1l+a+a«

<a—1+amy; () Z Mg ()

a
<a-—1+ .
o v 2enx
Thus
a—1 o +a—2 «
3.2 B, (sen (t — ), 1) + < + .
(3.2) s o)+ (257 ) < TEEER

Next we estimates,, , (¢., ). By the Lebesgue-Stieltjes integral representation, we have

Byo (gz, /Kna:ctgx()d

- (/11 +/12 +/13) Ko (2,1) go (t) dt

= F, + Es + Ej3, say,
where
Ilz{ox—i] IQZ{x—iHl_ﬂ and[;),:{x—i—l_—xl].
RV vn' vn vn
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We first estimater;. Writing y=x— % and using Lebesgue-Stieltjes integration by parts

with \,, , (z,t) fO o (T,u) du, we have

E, = /Oy 9o (1) di (Mo (,1)) = 9o (Y+) Ao (7, ) — /Oy Ana (2, 1) di (g2 (1))

Sincelg, (y+)| < V% (¢2), it follows that

| B | S\/(gx))‘n,a("B?y)“'/yAna z,t)d < \/ Ga )
y+ 0

t
By using [2.1) of Lemma 2|4, we get

a\T a\r *
|E1|<\/ (9z) n(z y) + - /0 (x—t ( \t/gz>

Integrating the last term by parts we have after simple computation

arz [V (gm) " Vilg)
= o]

|Ey| < —
0 (:L‘—t)

n
Now replacing the variablg in the last integral by — TE’ we obtain

+ 2

n

(3.3) ’EI|<7; \/gﬁZ\/ S%ZV

k=1 x——
Using the similar method of Lemnja 2.4 and equat- jon|(2.2), we get
2\
(3.4) | B3| < —Z \/ (92)
Finally we estimaté-,.
T 1—x
Fort € [a: - Ut | we have
+Le
|gx (t)| = |g:c< _g:c \/
S
and therefore
QH_% z+ l—x
vk
B2V @) [ dOnaton).
o2 =%

Sincefab diA, (x,t) dt < 1, for (a,b) C [0, 1], therefore

l—x -z
er\/E 1 n $+7

n k
(2 \a + 7)
(3.6) | B (92, )| < \/ (9z)-
nw
k=1 z—-%
vk
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Combining [3.1),[(3]2) andl (3.6), our theorem follows. O

4. SOME EXAMPLES

Recently Zeng [8] introduced some other generalized Meyer-Konig and Zeller operators as

(41) Mn,a(fax): (f 1dt>/ f dt / f na2 *Tt)dt

wherea > 1, K, o0 (z,t) = > 72, ?;:Xu’“)du andy; is the characteristic function of the interval

I = [, £ ] with respect tal = [0, 1] andef,Z (z) is as defined b'l). In particular,

n+k’ n+k+1

fora =1, the operator.l) reduce to the operaf?dr?sl (f,x) studied by Gud[2], as

(4.2) M, (f,) Zmnk /f

where
ﬁln,k(x):(nﬂ)(”*l’j“ )xk(l—x)n.

We have noticed that Theorem 2 in [8] and Theorem 4.2lin [7] are not correct, there are some
misprints. This motivated us to correct these estimates and in this section we have been able to
correct and achieve improved estimates over the results of Zengd ([7, 8]), Guo [2] and Love et
al. [5].

The misprinted estimate obtained by Zeng [8] is as follows:
Theorem 4.1. Let f be a function of bounded variation ¢i 1]. Then for every: € (0, 1) and
n sufficiently large, we have

Mo (fiz) — Q%f(w) - (1 - 2%) f(:v—)'

Yo" Sa o

< - — —
S LA R A e D Vo
v i

whereg, (t) and\/" (g,) are as defined by Theordm B.1.

Remark 4.2. It is remarked that there are misprints in Lemma 6 and Lemma 8 of Zeng [8].
Actually the author([8] has not verified his Lemmas 6 and 8 and he had taken these results
directly from the paper of Gud [2] (see Lemmas 5 and 6 bf [2]). As the Lemmas 5 and 6 of [2]
are not correct. Although these mistakes were pointed out earlier by Love éf al. [5] in 1994.
Zeng also has not gone through the paper of Love etial. [5] and in another paper he has obtained
the following misprinted exact bound for the operatfrs|(4.2):

Theorem 4.3.Let f be a function of bounded variation ¢, 1]. Then for every: € (0,1) and

n sufficiently large, we have

~

Moy (fo2) = 217 et) - f <x—>]'

2
<(16+i) L) - e+ =3V ()
B \/_6 I%\/ﬁ e k=1 xf% o
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whereg, (t) and\/; (g.) are as defined by Theor.l.

Remark 4.4. It may be remarked here that the factdrin Theore and®% in Theorem
[4.7 are not correct as the second moment estimate of/Guo [2] was not obtained correctly.

We now give the correct and improved statement of Thegrejm 4.1 with an outline of the proof.
For o = 1 our result reduces to the corresponding improved version of Theorém 4.3. Before
giving the theorem we shall give a lemma which is necessary in the proof of our Thgoftem 4.6.

Lemma4.5.Letn > 2, w, = (n_ 52 <1 + 12(1 5) ) where0 < § <z <1 -6, then
(i) for 0 < y < z there holds

y
(4.3) / Koz (z,t)dt <
0

awpz® (1 —x)
(x—y)?®

(i) forxz <y < 1 there holds

awyz (1 —z)°
(z —)”

Proof. Following [5, Lemma 7] forr € (0,1), n > 2, we have

~ 9 dr(l—x) 1 (1—2)
(4.5) M ((t—2)",2) < (n=1) +§.(n—1)(n—2)'

1
(4.4) / Koo (2,8) dt <

Using (4.5), we have

-1
/Kna2$tdt</Kna2$t ))dt
Y

((t — SE) ,:1:)

<% M.,
(x—y)
z(l—2x) (1—x)
[ " ]
(1-—

S( 1) n—1)(n—2)

4o ) { 3 - ]
< 5 |1+ ———=
2(n—1)(r—vy) 12(n —2)
aw,z? (1 — )
(x —y)
This completes the proof df (4.3). The proof pf (4.4) is similar. O

Theorem 4.6. Let f be a function of bounded variation @@, 1]. Then for every: € (0,1),
n>2and0 < <z <1-uz, wehave

Moa ) = g o) = (1= 5 ) £

5 1

< (TT%) T4 - £ o)

8

1—2o
-+ T

2 n 1— x)
—l—(awx( x)+ n_1>k1 I (92)

r— -
N

whereg, (t) and\/® (g.) are as defined by Theor.l anglis as given by Lemn@.S.
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Proof. First

~

M () = o f (a4) - (1 ) <x—>'
|+ Lzt

~

< | My (gs,

#ren - s @n = (1= 52) 16| M ).

Following [8], we haveZA\JW (04, ) =0and

~ 1 o
Mo (sgn(t — ), 2) < a2 Z My () — = | + 20‘625Z ), (z)

12 <

k' k' +1
wherez € [n+k” n+k,+1)

Using Lemma 23 and Lemma 2.5, we have

~ 5 1 a2”
Mnasnt_xyx S _+_ .
Sm(t-a),0)| < (§+ =) S5

Next, we esUmatd/[na(gJ;, , as follows

g:pa / Knantg:v()dt

\/ﬁ J:+ \/ﬁ 1
= </ +/ + > Kn,a,Q (%,t) gr(t)dt
0 - iz

ac—&-ﬁ
= R, + Ry + R3, say.

The evaluation of?,, Ry, R3 are similar to work in[[8]. We have

x+\f n x+f
| Rs| < \/ (92) Sn—lz \/ (92)
z—\% k=1 x——

Next suppose = = — \/iﬁ Using integration by parts with,, ,, (x,t) = fot Koz (x,u) du, we
have

Rlz/oy o (0)dy (fin (1))

Yy
= Gz (Y+) Hna (T, 9) /una dy (9 (1))
0
<\/9xunaa:y+/una (\/%)-
y+ 0 t

By (4.3) of Lemma 4.5, we have

xT

oawn:c?’(l—x) 3 . Y T
= Q)]

y+
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Integrating the last term by parts we get
x Yy x
|R1| < aw,z® (1 — ) [\/0 (293:) + 2/ Lgﬁ)dt} .
X 0 ((L’ — t)

Now replacing the variablg in the last integral by — % we have

1 X n X
Rl <= (Vg +Y V| v’ 1-2)
0 kzlx—%

< 2awpz (1 —x) \/ (9z) -

Finally using the similar methods, we have

3

x

|Rs3| < 20w,z (1 — ) (9z) -

-
r—-L
k

Combining the estimates @t,, R,, R3, our theorem follows. 0

Ed
—_

Remark 4.7. In particular, fora = 1, by Theorenh 4J6 it may be remarked that the main theorem
of Love et al. [5] i.e.(x 2 ) |f (z+) — f (x—)| can be improved to

N
{(G+—)/ Vs - 1.
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