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Abstract

In this present paper, we introduce a new and simple integral modification of
the Meyer-Konig and Zeller Bezier type operators and study the rate of conver-
gence for functions of bounded variation. Our result improves and corrects the

results of Guo (J. Approx. Theory56 (1989), 245-255 ), Zeng (Comput. Math.

Appl, 39(2000), 1-13; J. Math. Anal. Appl.219(1998), 364-376), etc.

2000 Mathematics Subject Classification: 41A25, 41A30.
Key words: Rate of convergence, Bounded variation functions, Total variation,
Meyer-Konig-Zeller-Bezier operators, Beta function.
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For a function defined of, 1], the Meyer-Konig and Zeller operatof, n €
N [6] are defined by

@) P =Y maf () e

n+k

where
Mg (z) = < n+Z_1 )xk(l—x)".

The rates of convergence of some integral modifications of the operators
(1.1 were discussed in] — [5] and [7]. Recently, Zeng{] generalized the op-
erators {.1) and its integral modification and estimated the rate of convergence
for functions of bounded variation. We introduce a new generalization of the
Meyer-Konig-Zeller operators for functions defined[onl| as

12)  Baa(fir)=3 Q) () / o (1) £ (£)dt, € [0,1],

k=0

wherea > 1,

and
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For further properties o@ff“,: (x), we refer readers ta3]. Actually, the main
purpose in introducing these operatat< is that some approximation formu-
lae for B, ,, n € N become simpler than the corresponding results for the other
modifications considered irk]. For o = 1, the operatorsi(.2) reduce to

B (f, ) Zmnk / nk (8) f (1) dt.

In the present paper, we study the behaviouBgf, (f, z) for functions of OnaNe(\szngregMeyter-Konig
bounded variation and give an estimate on the rate of convergence for these new ane cefier Spetators
integrated Meyer-Konig-Zeller-Bezier operators. In the last section, we give the Vijay Gupta
correct estimates for some other generalized Meyer-Konig-Zeller type operators
considered in{], [7] and [3]. Title Page
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In this section we give certain results, which are necessary to prove the main

result.
Lemma2.1.[7]. Forall k,n € N,z € (0,1], we have

1
\/2671337

where the constan% is the best possible.

Mk () <

Lemma 2.2. For r € N° ( the set of non negative integers ), if we define

1

Bua (t=2)" ) = Y mas(a) [ bus0) ¢~ o at,
k=0 0

then
Az 2(1—x)?

=1 m—1)n-2)

By ((t— z)? ,z) <

Proof. Pute, (z) = 2", r = 0,1,2,.... The moments of the operatoh, ; f
are given by

- n+k)!
Bui(t" x) = Zmn,k (x) ﬁB (k+r+1,n),
— ! !
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whereB is the Beta function. Obviousli, 1e° = e* = 1.

SR e (Bt
Bt = (1= Y (" )t

n+k+1)

ZO—xWEZ(n+k_2)x“k+m-m+k_n

e\ k-l ko (n+k+1)
= nHk—1Y\ . 2 2
>(1—-ux) ( )$+[1— = |1- Z. On a New Type of Meyer-Koni
; b n+1 n+1 e s
Next Vijay Gupta
2
Bn (t ,x) Title Page
e (nd+k—1Y\ . k(k—1)+4k+2
=(1—-2 T Contents
( );%( k ) (n+k+1)(n+k+2)
( ) . ( 44 (44
1—2)" o= (n+ k 3 (n + k 3 = (n+ k 3)! ok
< +4 < >
~ (n—1)! kz_; (k — Z kZ:
_oo 4 0o Go Back
n n 4+ kE—1 k49 n 4+ k—1 k41
<(1-2) ( >x++ ( "t Close
= w1 § k
it
n 2 n+k—1Y\ 4 QU
(n—1)(n—2) k * Page 6 of 22
2
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Combining these, we get

B ((t— z)? ,x) = B,1 (£*,2) — 22B,; (t,x) + z°
4 2(1 —z)?

R ICED)

In particular, given any\ > 4 and anyz € (0, 1), there is an integeN (A, z)
such that for alh > N (A, x)

2 )\I'
By ((t — ) ,ac) < -

Lemma 2.3. For all = € (0,1] andk € N, there holds

Q) (x) < ampy (x) < —==

vV 2enx '

Proof. It is easy to verify thata® — 0*| < aja—0b|, (0<a, b<1, a>1).
Then by Lemm&.1, we obtain

Q) (x) < ampy (z) < ——=

Vi 2enx
]

Lemma2.4.LetK, . (z,t) = S50 Q) () by (), andA > 4,n > N (X, z)
then

Y
(2.1) Ana (T,y) = / Koz, t)dt <
0

a\x

0<y<u,
n(r—y)

2
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1
(22) 1—-XMa(zy) = / Kpo(z,t)dt < AT 5 r<z<lI.
z n (’Z - m)
Proof. We first prove 2.1), as follows
/Knaxtdt</Knaxt( )
( )
< B ((t —2)",x)
(z — y)
2
- B ((t—xQ) , ) - a\r 5
(z —y) n(z—y)

by Lemma2.2. The proof of £.2) is similar.
Lemma 2.5.[8, p. 5]. Forz € (0, 1), we have

<

N
5
&-

Z M () —

n

2
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In this section we prove the following main theorem

Theorem 3.1. Let f be a function of bounded variation oo, 1], « > 1. Then
for everyz € (0,1) and\ > 4 andn > max {N (A, z), 3}, we have

«
a—+1

B ()~ | Ay @+ =27 )|

On a New Type of Meyer-Konig

1 {aQ +a—2 a }
< = + |f (x_|_) — f (x_)| and Zeller Operators
2 a+1 V2
ene 1—g Vijay Gupta
n T
(2Aa + z) \/ (0:)
nx 1 oz Title Page
Contents
where
f@)—flz—), 0<t<ua « >
gz (1) =14 0, t=ux; ¢ d
Go Back
f@)—flt), z<t<1 Close
and VZ (g.) is the total variation ofy, on|a, b]. Quit
Proof. Clearly Page 9 of 22
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< |B. (g (t—2),2) (a—l)‘ ) — £ (o)

a+1 2

+ ’Bn,a (ng 37)’ .

First, we have

By (sgn(t — x)

ZQM (/ (t)dt—/ombmk(t)dt)
- Z Q) ([ bt —2 [boar)

=1-2>" Q% (v) /O b (£) dt.
k=0

Using Lemma2.1, Lemma2.3and the fact thazfzo my,j (z) = fxl by (t) dt

we have

B (sgn(t —x),x)

0o k
—1-2% Q) () (1 = <x>>
k=0 Jj=0
0o k
= —1+2> QW) (v) (Z M <x>)
k=0 Jj=0

[e%S) k

< —-142« Z Mo e (2) Zmn,j (z)

k=0 j=0
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=—l+a+a

(M (2))°

NE

> Mg (2) Z Myj () —

k=0

i

0

ga—l—kozmn,k(x)Zmn,k(x)§a—1+ a

\/2671513"
Thus
a—1 a?+a—2 a
3.2 B, . t—x), < .
(3.2) a(sgn(t—z),z)+ (& T 1) ‘ a+1 /ent On a New Type of Meyer-Konig

and Zeller Operators

Next we estimateB,, , (¢., ). By the Lebesgue-Stieltjes integral representa-

tion, we have Vijay Gupta
n N g:pa / Kn e LU t gz ( ) t)dt Title Page
Contents
= </ +/ +/)Kn,a(:c,t)gx(t)dt
I I I 44 44
- El + E2 + E37 say, < >
where Go Back
T T l1—2z l1—=x
L =10,z — — I, = - — ——| and I3 = — 1.
1 {,x \/ﬁ]’ 9 |:.73 \/ﬁ,x+ \/ﬁ] 3 [m—i— \/ﬁ’ } Close
Quit

We first estimaté”;. Writing y=1x— \/iﬁ and using Lebesgue-Stieltjes integra-

tion by parts with\,, ,, (z, 1) fO na (7, 1) du, we have Page 11 of 22

Yy Yy
B = [ 00 00 o @) = 02 ) M (00) = [ Ao (@) i, (). R


http://jipam.vu.edu.au/
mailto:vijaygupta2001@hotmail.com
http://jipam.vu.edu.au/

Sincelg. (y+)| < V% (), it follows that

|E1’ S \/ (g;t> /\n,a (ZE,y) + /Oy /\n,a (I7t) dt <_ \/ (g;r)> :

By using @.1) of Lemma2.4, we get

’ a\T ax [V ’
|E1|§>{<9x)n(x_y)2+ n /0 (I—t < \/gm>

t

Integrating the last term by parts we have after simple computation

< 2 [V, P Vi)

0 ({E—t)

Now replacing the variablg in the last integral by: — % we obtain

+2

IN

@3 |Bl<2 V) S SAVARELS SRVATSS

k=1 x—— k=1 z— 2%

Using the similar method of Lemnia4 and equation4.2), we get

.
(3.4) |E3|<@Z \V (@)

Finally we estimate®,.
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Fort ¢

and therefore

Sinceff di, (

(3.5)

— %,:ﬁr% , we have
:p+%
|gac (t)| = |gz (t> — Gz (ZE)l < \/ (gw) )
=7k
x-"_l\;g x+171'

B2V @) [T dnaen).

T

T r——F=
I_ﬁ Vk

t)dt <1, for (a,b) C [0, 1], therefore

1
T n THE
Bl V @<V @),
xf% k: 1x7—k

Finally collecting the estimate8 () — (3.5), we obtain

(3.6)

n x+f

Bua (g0)] < 2295\ ()

k= 1:(:——

Combining @.1), (3.2) and (.6), our theorem follows.
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Recently Zeng{] introduced some other generalized Meyer-Konig and Zeller
operators as

~ (a) 1
(4.1) M,.(f, )—Z (Q”’“( )> Ft)dt = / Ft) Ky oo (z,)dt,
k=0 Tk 0

i, 1dt
Xk _ i
wherea > 1, K, 40 (2, 1) = >0, T X:(u) 7. andy;, is the characteristic func- O”agrfgvzgf(’; gp“é'faytf;sKO“'g
tion of the intervally, = [;27, 2577 ] with respect tol = [0, 1] andQ) (x) is S—
as defined byX(.1). In particular, fora. = 1, the operators41) reduce to the
operators\/,,; (f, =) studied by Guo], as Title Page
~ . . Contents
(4.2) Moo (f2) =Y g (z) | f(1)dt,
—~ I <4« >
where 4 d
i) = 1) (M Yk G0 Back
. . ) Close
We have noticed that Theorem 2 i#] and Theorem 4.2 in/] are not correct, _
there are some misprints. This motivated us to correct these estimates and in Quit
this section we have been able to correct and achieve improved estimates over Page 14 of 22
- - g
the results of Zeng ([, 2]), Guo [2] and Love et al. §].
The misprinted estimate obtained by Zeryif as follows: 3. Ineq. Pure and Appl. Math. 3(4) Art. 57, 2002
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Theorem 4.1.Let f be a function of bounded variation é¢i 1]. Then for every
x € (0,1) andn sufficiently large, we have

Mnoz( ,ZE)—Qiaf(ﬂf+)— (1_2%) f(l'—)‘
5 e
a (0%
§m|f($+)—f($—)|+nx+lk_l \/, (9:)
-1 -2

whereg, (t) and\/® (g.) are as defined by TheorednL

Remark 4.1. It is remarked that there are misprints in Lemma 6 and Lemma 8
of Zeng []. Actually the author {] has not verified his Lemmas 6 and 8 and he
had taken these results directly from the paper of GiJdgee Lemmas 5 and 6

of [Z]). As the Lemmas 5 and 6 of]are not correct. Although these mistakes
were pointed out earlier by Love et al5][in 1994. Zeng also has not gone
through the paper of Love et al5] and in another paper he has obtained the
following misprinted exact bound for the operatofsdj:

Theorem 4.2.Let f be a function of bounded variation é¢i 1]. Then for every
x € (0,1) andn sufficiently large, we have

~

M (F.2) = S [ (a4) - f <x—>]'

2
<(16+i) L) - a2y \f( )
- V2e x%\/ﬁ v v nx £ = 9z) >
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whereg, (t) and\/® (¢.) are as defined by Theorenl

Remark 4.2. It may be remarked here that the fact@f in Theorem¥.2 and
ni‘j‘rl in Theorem4.1 are not correct as the second moment estimate of Glo [

was not obtained correctly.

We now give the correct and improved statement of Theotehwith an
outline of the proof. Forx = 1 our result reduces to the corresponding improved
version of Theorem.2. Before giving the theorem we shall give a lemma which

is necessary in the proof of our Theorém. On a New Type of Meyer-Konig
and Zeller Operators

Lemma4.3.Letn > 2, w, = ﬁ (1 + ﬁ) where) < § <z <1-9,

(n—2) Vijay Gupta
then
(i) for 0 < y < x there holds Title Page
Contents
v aw,r3 (1 — )
(4.3) / Koo (z,t)dt < —2——— .
0 2 (@) (z —y)? <4 >
. < 2
(i) for x <y < 1 there holds
Go Back
! awnz (1 — z)°
(4.4) / Koo (@, t)dt < —————. Close
z (Z — ﬂf) .
Quit

Proof. Following [5, Lemma 7] forz € (0,1), n > 2, we have Page 16 of 22

(4.5) J\}n,l ((t — x)2 ,:L’) w

1 . (1 B I)Q J. Ineq. Pure and Appl. Math. 3(4) Art. 57, 2002
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Using @.5), we have

/Knagzptdt</Kna2xt ;))dt
< (:v—y)QMnl((t z)”, )
o [41‘ (1—2) (1—2) ]
T (x—y)’| (n—-1) 3(n—1)(n—2)
dax® (1 —

AR
T2 (n—1)(z—y)’ 12 (n — 2)
ow,a® (1 —x)
(z —y)
This completes the proof oft(3). The proof of ¢.4) is similar. O

Theorem 4.4.Let f be a function of bounded variation ¢i 1]. Then for every
€(0,1),n>2and0 < <z <1-x, wehave

2 \/2e /) \/nx
m_i_l*il
1 LI
2 1-—
R s DIV
k=1 z— 2%
Vk
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whereg, (t) and\/’ (g.) are as defined by Theorednl andw, is as given by
Lemma4.3.

Proof. First

~

-
< Bt (0| + [P D G s ).
Fren) = ger@n - (1= 50) £ o) B 00

Following [2], we have]\}n,a (6z,x) =0and

~

1 a
M. (sgn(t—2x),z) <a2® Z Mg () — 3 + QO‘QEZ’,L (x)

11—z

k' k'+1
wherex € [n+k” n+k,+1).

Using Lemma2.3and Lemma&.5, we have

~

5} 1 2¢
M, o (sgn(t — ), 2) @

<(37vx) =
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Next, we estimaté/,, ., (g., ), as follows

ga:; / Kna? l'tgm()d

(L

= Rl + RQ + Rg, say.

) n,o,2 (L’ t) gm<t)dt

On a New Type of Meyer-Konig

. . . and Zeller Operators
The evaluation of?,, R, R3 are similar to work in £]. We have

Vijay Gupta
z—&—lﬁ n 412 f
|Ro| < \/ (92) én—lz \/ (92) - Title Page
m—% k=1 r——
Contents
Next suppose) = = — = Using integration by parts with, , (z,t) = pp >
I3 Ko (2, 1) du, we have < >
y
Go Back
Rlz/ ()dt(ﬂna<xat))
0 Close
=0z (y+ ,una X y ,Un,a (gx (t)) Quit

xT

<\ (92) ttna (2, 9) +
y+

o\ﬁ

z Page 19 of 22
,un,oc \/ ga: .
t
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By (4.3 of Lemma4.3, we have

’ aw,z? (1 — ) 501 Y !
|R1|§\/(gx)w+awn$ (1 l‘)/o a1 ( \/%)

y+

Integrating the last term by parts we get

IRy| < aw,a® (1 - x) {% + 2/0 (Vt (9””>dt}

z—t)°

On a New Type of Meyer-Konig
and Zeller Operators

Now replacing the variablg in the last integral by — % we have

Vijay Gupta
1 .
— — Title Page
|R1|§g€2 \/ o +Z \/ aw,r’ (1 — ) g
k=1 a— 2 Contents
< 20w, (1 — ) \/ (9) - 44 dd
k=1 a2—2 < >
Finally using the similar methods, we have Clo 2HiES
o Close
|Rs| < 20w,z (1 —x Z (9z) - Quit
k=1 2=-Tr Page 20 of 22

Combining the estimates dt;, R;, R3, our theorem follows. ]
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Remark 4.3. In particular, for = 1, by Theorem}.4 it may be remarked
that the main theorem of Love et ab]|.e. (x 2 > |f (x+) — f (z—)| can be

improved to

nT

{G+—)/vaahirwn - e
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