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ABSTRACT. Let¢ be a holomorphic self-map of the open unit polydigkin C™ andp, ¢ > 0.
In this paper, the generally weighted Bloch spaBé)%(U”) are introduced, and the bounded-

ness and compactness of composition opei@goirom Bf, (U™) to B, (U™) are investigated.
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1. INTRODUCTION

Suppose thab is a domain inC™ and¢ a holomorphic self-map ab. We denote by (D)
the space of all holomorphic functions édnand define the composition operatdy on H (D)
by Cof = fo¢.

The theory of composition operators on various classical spaces, such as Hardy and Bergman
spaces on the unit disK in the finite complex plan€ has been studied. However, the mul-
tivariable situation remains mysterious. It is well known[in [3] and [5] that the restriction of
C, to Hardy or standard weighted Bergman space#/ as always bounded by the Littlewood
subordination principle. At the same time, Cima, Stanton and Wogen confirmed in [1] that the
multivariable situation is much different from the classical case (i.e., the composition operators
on the Hardy space of holomorphic functions on the open unit ball’cdis well as on many
other spaces of holomorphic functions over a domairCbfcan be unbounded, even when
n = 1in [6]). Therefore, it would be of interest to pursue the function-theoretical or geometri-
cal characterizations of those mapwhich induce bounded or compact composition operators.

In this paper, we will pursue the function-theoretic conditions of those holomorphic self-maps
¢ of U™ which induce bounded or compact composition operators from a generally weighted
p—Bloch space to a—Bloch space witlp, ¢ > 0.
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Forn € N, we denote by/" the open unit polydisk i :
Ut ={2=(21,22,....2) 1 25| < 1,7 =1,2,...,n},
and

n
<Zaw> = szw_ja |Z| - <Z,Z>
j=1

foranyz = (21,29,...,2,), w = (w1, we,...,w,) INC". a = (ay,q,...,aq,) is said to be
ann multi-index if o; € N, written bya € N*. Fora € N, we write 2® = 2] 257 --- 20

andz) = 1, 1 < i < n for convenience. Fot,w € C", we denotdz, w]; = z whenj = 0,
[z, w]; = wwhenj =n, and

[z, w]; = (21, 22, - -+ Znjy Wn—jg1s - - -, Wy)
whenj € {1,2,...,n — 1}. Then[z,w],—;, = w whenj = 1, and[z,w],_j11 = w when
j=n+1,forj=223,...,n,

(2, Wn—ji1 = (21, 22, o, Zjo1, Wy, - .., W)
Foranya € Candz) = (21, 22, .- -, 2j-1, Zj11, - - - » Zn), WE Write

(a,25) = (21,22, -+, Zj=1, Gy Zjg1, - - o s 2n).-

Moreover, we adopt the notatignl’'1) <y for an arbitrary subsequence @) ;cy.
Recall that the Bloch spade(U™) is the vector space of afl € H(U™) satisfying
bi(f) = sup Qf(z) < oo,

zeUmn

e USSR (5 or
o= sp DI vr) = (5L 7))

and the Bergman metrif : U™ x C" — [0,00) onU™ is

where

n

o B Jug|*
(Z,U) - Z 1 o |Zk|2

k=1

(for example see [9][]15]). It is easy to verify that bdg0)| + b, (f) and

17l =150+ s 3|52 (0~ )

are equivalent norms aB(U™). In [10], [12] and [8], some characterizations of the Bloch space
B(U™) have been given.
In a recent paper [2], a generalized Bloch space has been introduced; Bhech space:
for p > 0, a functionf € H(U™) belongs to thev-—Bloch spaceB?(U") if there is some
M € [0, 00) such that

n

Zﬂ

z
2 9., %)

The references [13] to [7] studied these spaces and the operators in them.
Dana D. Clahane et al. inl[2] proved the following two results:

1— | <M, VzeU™

Theorem A. Let ¢ be a holomorphic self-map @™ andp,q > 0. The following statements
are equivalent:

(a) C, is a bounded operator from?(U™) to BY(U™);
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(b) There isM > 0 such that

" | ¢y (1 — [=[*)?
(1.1) kZZ:I a_zk(Z)‘ (1= la(z))2)P

Theorem B. Let ¢ be a holomorphic self-map 6f* andp, ¢ > 0. If condition [1.1) and

, ~ |0, (1 — |z]?)9
1.2 lim g —_—
(1.2) $(z)—oUm

< M, Vze U™

=0

1 azk("z)‘ (L= [a()Py
hold, thenC, is a compact operator fro?(U") to B(U™).

Now we introduce the generally weighted Bloch spﬂf%(U”)
Forp > 0, a functionf € H(U) belongs to the generally weighted Bloch space3!
if there is some\/ € [0, co) such that

om)

log

| of ) 2
—_— 1-— Plog— < M ",
> |G| P los g <ML eeU
Its norm in By (U™) is defined by
171155, = 1£(0) (1~ | log 17—
Bﬁ)g zGU" k gl |Zk|2

In this paper, we mainly characterize the boundedness and compactness of the composition
operators betweefy (U") and Bi,(U™), and extend some corresponding results in [2] and
[11] in several ways.

2. MAIN RESULTS AND THEIR PROOFS
First, we have the following lemma:

Lemma2.1.Letf € B (U")andz € U", then:

log

@) /()] < (1+ =25z ) 111y, whenO < p < 1;
0) 1£(2)] < (a5 + sga) ies 108 111, whenp = 1
©) [f(»)| < ( +5 2f 1Zg2> S WH”BP whenp > 1.

Proof. Letp > 0, z € U", from the definition of]| - ||Bﬁ)g we have|f(0)| < ||f||Bf;g and

of /115 /115

log log

2.1 —
(1) azk(z)’ ~ (1 —|z|?)Plog 1_|2Zk‘2 ~ (1 —|z/[?)Plog2

for everyz € U™ andk € {1,2,...,n}. Notice that

= Z (0, 2Jn—k41) — £([0, 2]n—k)

N LOF(0, (tzi, 2)]nrs1)
= ;Zk/o D2 dt

J. Inequal. Pure and Appl. Mat}8(3) (2007), Art. 85, 8 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 HAIYING LI, PEIDE LIu, AND MAOFA WANG

and then from the inequality (2.1), it follows that

"l s
A< 150 + 5t
£(2)] < |£(0) Ejkgz o (1= [tz
1Ay, &~ 1o 1
(2.2) < [/l / !
I ||Blog log 2 ; o (L2
Forp = 1, we have:
n ool 1 T4 ]n] 1 4
2.3 / —dt=) Zlo <2 e

If p > 0andp # 1, then

n | 2| 1 2] 1 o 1 - (1 — |Zk|
(2.4) ;/0 mdtSZ/o mdt_kz

k=1

Now for (a), from [2.4),

|2k | 1 1
2.5 / —_dt < ——.
(25) 2 et

From (2.2) and[(2]5), it follows that
1< (14 s ) Wl

For (b), Sincdog ﬁ > log4 = 2log 2 for eachk € {1,2,...,n}, then
1T < 4

2.6 1< — log ———.

(2.:6) <2nlog2;og1—|zk|2

Combining [(2.2),[(Z2]3) and (2.6) we get

1 1
‘ ( )‘— <210g2+2n10g2)z g | PHfHBlog'
For (c), from [Z.4) we have

n

e | 1— (1= |z|)P - op—1
2. ——d
@ 3 [ S G T S 2 G
By (2.2) and[(Z.]7), we obtain

2p-1 1
I < 1, + 15 =Ty 2o (= et

log

n

1 op—1 1
(2= R |
< <n T (p—1) log?) ; (1 — |z]2)P1 HfHBlog

Lemma2.2.Forp >0, [ € {1,2,...,n} andw € U, the functionf!, : U» — C,
1

2
L(2) = dt
ful2) /0 (1 —wt)log =

belongs taBy, (U™).
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Proof. Letk,l € {1,2,...,n} andw € U, then

8 l
(2.8) o g eevm k£l
8zk
and
ofL 1
2.9 : VzeU".
( ) azl ( ) (1 _ wzl)plog e z
An easy estimate shows that ther®is M < +oo such that
1 — |wz|)P log
( [@=)) - ‘wz| < M, Vz,w e U.

|1 — wz|Plog i 2w2|

Therefore, by[(2]8) andl (3.9), we have
l
£ (O] + Z f

R >plog1 -

|1 —wzlp|log — ml|

(1 — [ax/? )plogw

(1|2 log 25 (1 [@a)?log =2

- (]_ — |Ezl|)7’logﬁ |1 —@_UZl|p logﬁ
op
< - M < 400
pelog 2
andthus{f, :w e U, 1 € {1,2,...,n}} C B} (U"). O

Theorem 2.3.Let¢ be a holomorphic self-map of the open unit polydiskandp, ¢ > 0, then
the following statements are equivalent:

(a) Cy is a bounded operator fromsy (U™) and By (U");

(b) Thereis anM > 0 such that

(O | (L=l e
(2.10) —(z ‘ : :
1§1 ﬁzk( ) (1= |ou(2)]?) log e
Proof. Firstly, assume that (b) is true. By Lemra]2.1, there i§ a> 0 such that for all
f € Blog(Un>’
(2.11) [f(@(ON] < Cllfll5z,-

log

< M, Vze U".

Then forallz € U™,

- 3(C¢f) ‘ _ 2\q L
> | g (9] (4= I )es T
n 8_f B 2p1 2
<3| 0|0 - PP los T
|00 ' (1=l logrip
|0z | (L= |ou(2) )P log 0,
< M|flls,.

log

and (a) is obtained.
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Conversely, let € {1,2,...,n},if (a) is true, i.e. there is & > 0 such that
(2.12) HC¢fH <Clfls,.  VfeB, U,

log

then, by Lemma 2|2 anfl (2]12), there iQa> 0 such that

—~ [\~ 9f. O
e (0(2)) - 5=(z

kz:; lz:; 9 Oz,

Lettingw = ¢(z), and using[(2)8) and (3.9), we have

) AT P Ty log 7

21027 T o Tog =2

log

(1 — |z[*)*log

\_/

< CQ, Yw e U,ze U".

1— |z~

\/

< CQ.

O

Lemma 2.4.Lety : U" — U™ be holomorphic ang, ¢ > 0, thenCy is compact from
By, (U™) to B, (U™) if and only if for any bounded sequeng®);cn in By, (U"), whenf; — 0

log log
uniformly on compacta it/", then|(|Cy f;||ps — 0 asj — oc.
og

Proof. Assume thaU; is compact andf;);cn is a bounded sequencefif, (U") with f; — 0
uniformly on compacta i/™. If the contrary is true, then there is a subsequétfee),,cn and
ad > 0such thaq|()¢f]m||Bq > ¢ for all m € N. Due to the compactness ©f,, we choose a

subsequencef;; © ¢)ien Of (Cqsfjm)mGN = (fjm © ®)men and somey € Blog(U”), such that

(2.13) i [} fmi 0 & = gllgg = 0.
Since Lemma 2]1 implies that for any compact subiéet U", there is &, > 0 such that
(2.14) [ fimi(9(2)) = 9(2)| < Cillfjmod—gllgg .,  VIEN, z€ K.

By (2.13), f;mi 0 ¢ — g — 0 uniformly on compact subset ri*. Sincef;,,;¢(z) — 0asl — oo
for eachz € U™, and by [2.14), thep = 0; (2.13) shows

hm HC(b(mel)HBq =0,

log

it gives a contradiction.

Conversely, assume thgg;)en is a sequence i}, (U™) such that|]gj||Blz;g < M for all
j € N. Lemma] 2.1 implies that ifg;);cy is uniformly bounded on any compact subset in
U™ and normal by Montel’s theorem, then there is a subsequ@ngg..cv Of (g;),en Which
converges uniformly on compacta Ui to someg € H(U™). It follows that agfm — gj
uniformly on compacta ir/" for eachl € {1,2,...,n}. Thusg € B| (U") W|th | Gjm -
gHBf';g <M+ HSJHBﬁ,g < oo andg;,, —g converges t6 on compacta i/, so by the hypotheses,

gimo9 — gogin B (U"). ThereforeC, is a compact operator frod, (U") to B, (U"). O

log
Lemma 2.5. If forevery f € By (U"), Cy f belongs taB] (U™), theng™ € By (U™) for each
n-multi-indexa.

Proof. As is well known, every polynomial, : C* — C defined byp,(z) = z*isin Bf;g(U”).
Thus, by the assumptiafl, (%) = ¢~ € B, (U"). O

Theorem 2.6. Suppose thap, ¢ > 0,¢ : U™ — U" is a holomorphic self-map such that
oK € Blog(U”) for eachk € {1,2,...,n} and

8@(2)" (1 — 2?1 'logﬁ
oz | U= o)) log 2

(2.15) lim i

=0,
o(z )HaU”
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thenCy is a compact operator froms; (U™) to By,

™).

Proof. Let (f;);en be a sequence iBﬁ)g(U") with f; — 0 uniformly on compacta iV" and

(2.16) Ifillse, <C. VieN.
By Lemmd 2.4, it suffices to show that
(2.17) Jim 1Cs fillps, =0

Notice that if|]¢mHquog = 0 forallm € {1,2,...,n}, theng = 0 andC, has finite rank.
Therefore, we can assundé > 0 and H¢m“3ﬁ,g > 0 for somem € {1,2,...,n}. Now let
e > 0, from (2.15), there is an € (0, 1) such that

" | 96, (L—|zf®r  logrgp  «
2.18 — . . —
(2.18) 2 azk(z)‘ (BT ——Ts

for all z € U™ satisfyingd(¢(z),0U™) < r. By using a subsequence and the chain rule for
derivatives,[(2.16) andl (2.]L8) guarantee that for all suahdj € N,

zn: I(Csf)

2
L 1— )4
I

g _ 2\p #
33 a&w(z»\u 61 log T
|2 late s
21529 A0 g s
g
C %:E

To obtain the same estimate in the ca$e(z),0U™) > r, let £, = {w : d(w,0U") >
r}. SinceE, is compact, by the hypothesi§f;);cn and the sequences of partial derivatives

<2—J2>j€N converge td@ uniformly on E,., respectively. Then

> [gee| fe] -,
‘;—gwu)) ez,
<3 |Gt <5 fosi = o0

=1
Since{#(0)} is compact, we havé;(¢(0)) — 0 asj — oo, andHCd)fjHB&g — 0asj — oo,

thusC, is a compact operator frol| (U") to By (U™). O

Theorem 2.7.Let ¢ be a holomorphic self-map éf* andp, ¢ > 0. If conditions [(2.1D) and
(2.19) hold, therCy; is a compact operator fromsy, (U") to By, (U™).

log log
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log

and Theorerh 216.

Proof. If (.10) is true, therCy; is bounded fromBy (U™) to By, (U") by Theorend

o € By, (U") foreachk € {1,2,...,n} by Lemmg 2.5. The proof follows on applyi 15)
L]
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