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Abstract: Let ¢ be a holomorphic self-map of the open unit polydi8K in C" and Close

p, g > 0. In this paper, the generally weighted Bloch spaﬁ’g,g(U") are
introduced, and the boundedness and compactness of composition opgrator

from B, (U™) to B (U™) are investigated.
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J
1. Introduction ||\v
S

Suppose thab is a domain inC™ and¢ a holomorphic self-map ab. We denote
by H(D) the space of all holomorphic functions édhand define the composition
operatotCy, on H(D) by Cyf = f o ¢.

The theory of composition operators on various classical spaces, such as Hardy
and Bergman spaces on the unit diskn the finite complex plan€ has been stud-
ied. However, the multivariable situation remains mysterious. It is well know8]in [
and 5] that the restriction of”; to Hardy or standard weighted Bergman spaces on
U is always bounded by the Littlewood subordination principle. At the same time,
Cima, Stanton and Wogen confirmed ij fhat the multivariable situation is much
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different from the classical case (i.e., the composition operators on the Hardy space Title Page
of holomorphic functions on the open unit ball©f as well as on many other spaces

of holomorphic functions over a domain @f* can be unbounded, even whenr-= 1 Clarlteinis
in [6]). Therefore, it would be of interest to pursue the function-theoretical or geo- <« »
metrical characterizations of those map®hich induce bounded or compact com-

position operators. In this paper, we will pursue the function-theoretic conditions of ) >

those holomorphic self-mapsof U™ which induce bounded or compact composi-

tion operators from a generally weightgd Bloch space to g—Bloch space with

p, ¢ > 0. Go Back
Forn € N, we denote by/" the open unit polydisk ifC" :
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said to be am multi-index if o; € N, written bya € N*. Fora € N, we write
« aq 02

2% = {1257 29 andz? = 1,1 < i < n for convenience. For,w € C", we
denotelz, w|; = z whenj = 0, [z, w]; = w whenj = n, and

[z,w]; = (21, 22, - -y Zn—jy Wn—ji1s - - -, Wy)
whenj € {1,2,...,n — 1}. Then[z, w],—; = wwhenj = 1, and|z, w],—j41 = w
whenj =n+1,forj =2,3,....,n,

(2, W]n—jr1 = (21, 22, -+, Zj1, Wy, - ., Wh).
Foranya € Candz} = (z1, 22, .- -, 2j-1, Zj11, - - - » 2n), WE Write

(a,2;) = (21,22, -+, 2j=1, G, Zjg1, - - o 5 2n).-

Moreover, we adopt the notatigal’1) ;. for an arbitrary subsequence @), cy.
Recall that the Bloch spad&(U™) is the vector space of afl € H(U™) satisfying

bi(f) = sup Qs(z) < oo,

zeun

where

0= sup UL

—ﬁz a—fz
o (STELNL Vﬂa—(&gxuw&g>>

and the Bergman metrilf : U" x C" — [0,00) onU™ is

H(z,u) = Z iy

= 1Ll
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(for example seed], [15]). Itis easy to verify that bothf(0)| + b:(f) and

1flls = 1(0) (1= Jz])

are equivalent norms oB(U™). In [10], [12] and [8], some characterizations of the

Bloch spaceB(U™) have been given.

In arecent papef], a generalized Bloch space has been introduceg-tiisdoch
space: fop > 0, a functionf € H(U™) belongs to thes—Bloch spaceB?(U") if
there is somé/ € [0, co) such that

— |z
; 52 )
The referenceslf] to [7] studied these spaces and the operators in them.

Dana D. Clahane et al. ir2] proved the following two results:

Theorem A. Let ¢ be a holomorphic self-map &f" andp,q > 0. The following
statements are equivalent:

(a) Cy is a bounded operator from?(U") to B4(U");
(b) There isM > 0 such that

" oo [ (- |al)
ay 2 )| T

Theorem B. Let¢ be a holomorphic self-map 6f* andp, ¢ > 0. If condition (L.1)
and

TR LN B 7 Wi
(1.2) s g_:l Oz (Z)‘ (1—|eu(2) )

(1—|alP)P <M,  VzeU™

<M, VzeU™

=0
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hold, thenC, is a compact operator fro3?(U") to B4(U™).

Now we introduce the generally weighted Bloch spakie (U").
Forp > 0, a functionf € H(U) belongs to the generally weighted-Bloch
spaceB,, (U") if there is somel/ € [0, oo) such that

_ p - n
Z ‘ 1 |Z]€| ) log |Zk:|2 S M7 VZ € U : Composition Operators
Haiying Li, Peide Liu and Maofa Wang
Its norm in By, (U™) is defined by vol. 8, iss. 3, art. 85, 2007
Ifllsp, = 17O)] + sup z ]— e e b
zEU"
Contents
In this paper, we mainly characterize the boundedness and compactness of the o W
composition operators betweds{ (U") and By (U"), and extend some corre-
sponding results ing] and [11] in several ways. < >
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2. Main Results and their Proofs

First, we have the following lemma:
Lemma2.1. Letf € By (U")andz € U™, then:

(@) /() < (1+ =31z ) 1/ g, wheno < p < 1;
(0) 11(2)] < (3355 + 7rig3) Lies 08 11 1, whenp = 1;

© [f(2)] < (% T 2;7 l:gZ) 2kt WHJC“BP whenp > 1.

Proof. Letp > 0, z € U™, from the definition of]| - HB{;g we have|f(0)] < ||f\|B{;g
and

1l 115,
<
S U= aPlog s — (1 [zlP)Plog?

foreveryz € U™ andk € {1,2,...,n}. Notice that

of

@) S (2)

=" £(10, Zlpsr) = F(0, 2l

< LOL([0, (t2ks 24)]nkt1)
= ;Zkz/o 92 dt

and then from the inequality? (1), it follows that

LEA
- log2 Jo (1— [tz
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HfHB

|2k
22) < [l + “Z/ T

Forp = 1, we have:

BN 1, 14z =1 4
2.3 — < —log ———.
23) z/ 22 e EED I e

=1 k=1
If p > 0andp # 1, then

n

n B 1
(2.4) ’;/0 mdtﬁ

Now for (a), from @.4),

B 1 1
(2.5) / —_—dt < —.
; o (L=t l=p

From (2.2) and @.5), it follows that

VWSOWF%—JW%

k=1

For (b), Sincdogﬁ > log4 = 2log 2 for eachk € {1,2,...,n}, then
1T < 4

2.6 1< — log ———.

(2.6) <2n10g2; Og1—|zk|2

Combining ¢.2), (2.3) and @.6) we get

1 1
< 1
Lmﬂ(mﬂ+M®)Z% el

[ ey
0
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For (c), from ¢.4) we have

n

S —~ 1= (1 [z
2.7) ;/0 Tt 2 o) [

2v~1
(p =11 = [z[)r~t

(]

Sl

IN

k=1
Composition Operators

By (2.2) and @.7), we obtain

Haiying Li, Peide Liu and Maofa Wang

op—1 n 1 vol. 8, iss. 3, art. 85, 2007
< P P
EN <1l + G Tyog3 2 T Teet 1
1 or—1 n 1 Title Page
<|-+—— | flls -
(n (p—1) 10g2> ; (1 — [z]?)p1 ”fHBlog Contents
L <« »
Lemma2.2.Forp >0, [ € {1,2,...,n} andw € U, the functionf!, : U» — C, < >
21 1
l
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An easy estimate shows that ther®is M < +oo such that

(1~ w2 log -2
o |§M, Vz,we U.

’1 — EZ|p log ﬁ
Therefore, by Z.6) and ¢.9), we have

[
(0 f (1~ |=f?)?log -

_ |Zk|2

<1 - |zl| log =2

B |1 — wz|?|log

1—wz ’

(L a2y log r2p (1~ [@a)?log 2y

T (1- |wzl\)7’logﬁ 11 —@zl]plogﬁ
op
< M < 40
pe log 2
and thus{f, :w e U, l € {1,2,...,n}} C Bf (U"). O

Theorem 2.3. Let ¢ be a holomorphic self-map of the open unit polydi&kand
p,q > 0, then the following statements are equivalent:

(@) Cy is a bounded operator froms} (U™) and B, (U™);
(b) Thereis anM > 0 such that

" | dgy (1|27 log =iz
(2.10) —(z ‘ . .
,;:1 82k( ) (L= le(2)P)P log =2

log

< M, Vze U™
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Proof. Firstly, assume that (b) is true. By Lemrid, there is &' > 0 such that for
all f Blog(U”),

(2.11) [f (@) < Cllfllsz,-
Thenforallz € U",
~|9(Cyf) 210 2
2 "o, <Z)‘(1"Zk' ) 1°g1—|z E
2
(6| (1~ [P o T
logﬁ

g2

5¢l ‘ (1 —lal)?
8zk L —|gu(2)?)P log 1—|¢3(z)|2
< M| fllgr ,

log
and (a) is obtained.
Conversely, let € {1,2,...,n},if () is true, i.e. there is & > 0 such that

(2.12) ICaf I < Clfllgp,. VI € Bly(U™),
then, by Lemma&.2and .12, there is &) > 0 such that

n n afl 3@ . 2
Yw _ e . n
D3 G 0D 5 ()| (-l los o <CQ. YwelzeU
Lettingw = ¢(z), and using £.8) and ¢.9), we have
- log —1_|ik‘2

< CQ.

=

ad)l ' (1= |zl®)?
azk (1 —=1[du(2))P log =2
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Lemma 2.4. Let¢ : U™ — U™ be holomorphic ang, ¢ > 0, thenCy is com-
pact fromBf_(U™) to By, (U") if and only if for any bounded sequengg);cy in
By, (U™), when f; — 0 uniformly on compacta i/", then \|C¢fj|\31qog — 0 as
J — o0.

Proof. Assume that’;; is compact and f;);cy is @ bounded sequence Bf,,(U")
with f; — 0 uniformly on compacta i/". If the contrary is true, then there is a
subsequencef;,,)men and as > 0 such thaﬂ\0¢fijB{zog > ¢§ for all m € N. Due
to the compactness 6f;, we choose a subsequern(gg,,; o ¢)ien Of (Cy fim)men =
(fjm © ®)men and somey € By (U™), such that

(2.13) I | fymi o & = gllsg, = 0.

Since Lemma&2.1 implies that for any compact subskt C U", there is aCj, > 0
such that

2.14)  [fim(@(2) —9(2)| < Cillfimo ¢ —gllpe,  VIEN, z€ K.

By (2.13), fjmio$—g — 0 uniformly on compact subset ii". Sincef;,,;¢(z) — 0
as/ — oo for eachz € U™, and by ¢.14), theng = 0; (2.13 shows

Tim | Co(fimi)ll 5, =0,

it gives a contradiction.

Conversely, assume that;);cn is @ sequence iy, (U™) such thalj|gj|]Blz;g <
M for all j € N. Lemma2.1implies that if(g;),en is uniformly bounded on any
compact subset ii” and normal by Montel’'s theorem, then there is a subsequence

(gjm)men Of (g;)jen Which converges uniformly on compacta iff to someg €

H(U™). It follows that 8;;’;” — g—fl uniformly on compacta irU™ for eachl €
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{1.2,...,n}. Thusg € B, (U") with gjm — gllsp. < M + [|gllsp, < oo and
g]m g converges t® on compacta i/", so by the hypotheseg;,, o ¢ — go¢in
By, (U™). ThereforeC,, is a compact operator frofi,(U™) to B (U™). O

log log
Lemma 2.5. If for every f € By (U"), Csf belongs toB] (U"), then¢® €

By, (U™) for eachn-multi-indexa.

Proof. As is well known, every polynomial, : C" — C defined byp,(z) = 2 is
in By (U™). Thus, by the assumptiati;(z*) = ¢~ € BL_(U™). O

log
Theorem 2.6. Suppose that, ¢ > 0,¢ : U™ — U™ is a holomorphic self-map such

log

that¢, € By, (U") for eachk € {1,2,...,n} and
2
001 | (L= laf)" log Tz
(2.15) lim ‘ ‘ : =0,
$(2)—0Un Z Oz, (1= lou(2)?)P log i=Zmm

thenCy is a compact operator froms; (U™) to B,

o).

Proof. Let (f;)en be a sequence iy, (U™) with f; — 0 uniformly on compacta
in U™ and

(2.16) Ifillsp, <C. VjeN.
By LemmaZ.4, it suffices to show that
(2.17) Jim (|G f |, = 0

Notice that ingﬁmHBﬁ)g = 0forallm € {1,2,...,n}, thenyp = 0 andC, has
finite rank. Therefore, we can assurie> 0 and H¢m|\B{gg > ( for somem €
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{1,2,...,n}. Now lete > 0, from (2.15, there is an € (0, 1) such that

" | o (1— |z logip °
2.18 5. (2)] ' 20
(2.18) gg&ﬁﬂuwMWVM%ﬁw 2¢

for all z € U™ satisfyingd(¢(z),0U™) < r. By using a subsequence and the chain
rule for derivatives, .16 and .18 guarantee that for all suchand; € N,

" 9(Cyf 2
> %’;)(Z)‘(l— IzkIQ)qlogl_—w

k=1
n a_f _ 2\p #
g;awwwﬂwwmb%—WMQ
~ |99 ' (- |apP)y  losrfp
0Dl Gl T e
g g

To obtain the same estimate in the cd&g(z), 0U™) > r,letE, = {w : d(w,0U™) >
r}. SinceE, is compact, by the hypothesisf;);cn and the sequences of partial

derivatives(g—g) converge td uniformly on E,., respectively. Then
JEN

. a<C¢fj) 2 2
b -2 ) 1_ Moo — =
; aZk (’Z) ( ’Zk’ ) og 1_ |zk|2
8f] a¢l B q
>[5 @)1= laPros =
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0
2; Lot ol
0
<3 sup [ Z)|-foilig, < 5 (asi = +o0).
=1 Webr

Since{¢(0)} is compact, we havg;(¢(0)) — 0 asj — oo, and|]C¢fjHquog — 0as
j — oo, thusCy is a compact operator frol| (U") to By (U"). O

log
Theorem 2.7. Let ¢ be a holomorphic self-map éf" andp, ¢ > 0. If conditions
(2.10 and .15 hold, thenC,, is a compact operator froms; (U™) to BY _(U™).

log

Proof. If (2.10) is true, therC; is bounded fromB| (U™) to By .(U™) by Theorem

2.3 andgy, € B, (U") foreachk € {1,2,...,n} by Lemma2.5. The proof follows
on applying £.15 and Theoren?..6. O

log
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