

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 4, Article 152, 2006

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR ANALYTIC FUNCTIONS DEFINED BY THE DZIOK-SRIVASTAVA LINEAR OPERATOR

G. MURUGUSUNDARAMOORTHY AND N. MAGESH

SCHOOL OF SCIENCE AND HUMANITIES
VELLORE INSTITUTE OF TECHNOLOGY
DEEMED UNIVERSITY, VELLORE - 632014, INDIA.

gmsmoorthy@yahoo.com

DEPARTMENT OF MATHEMATICS
ADHIYAMAAN COLLEGE OF ENGINEERING
HOSUR - 635109, INDIA.
nmagi_2000@yahoo.co.in

Received 27 March, 2006; accepted 19 September, 2006 Communicated by N.K. Govil

ABSTRACT. In the present investigation, we obtain some subordination and superordination results involving Dziok-Srivastava linear operator $H_m^l[\alpha_1]$ for certain normalized analytic functions in the open unit disk. Our results extend corresponding previously known results.

Key words and phrases: Univalent functions, Starlike functions, Convex functions, Differential subordination, Convolution, Dziok-Srivastava linear operator.

2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.

1. Introduction

Let $\mathcal H$ be the class of functions analytic in $\Delta:=\{z:|z|<1\}$ and $\mathcal H(a,n)$ be the subclass of $\mathcal H$ consisting of functions of the form $f(z)=a+a_nz^n+a_{n+1}z^{n+1}+\cdots$. Let $\mathcal A$ be the subclass of $\mathcal H$ consisting of functions of the form $f(z)=z+a_2z^2+\cdots$. Let $p,h\in\mathcal H$ and let $\phi(r,s,t;z):\mathbb C^3\times\Delta\to\mathbb C$. If p and $\phi(p(z),zp'(z),z^2p''(z);z)$ are univalent and if p satisfies the second order superordination

(1.1)
$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z),$$

then p is a solution of the differential superordination (1.1). (If f is subordinate to F, then F is superordinate to f.) An analytic function q is called a *subordinant* if $q \prec p$ for all p satisfying (1.1). A univalent subordinant \widetilde{q} that satisfies $q \prec \widetilde{q}$ for all subordinants q of (1.1) is said to be

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

the best subordinant. Recently Miller and Mocanu [14] obtained conditions on h, q and ϕ for which the following implication holds:

$$h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) \prec p(z).$$

Using the results of Miller and Mocanu [14], Bulboacă [5] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators [4]. Ali et al. [1] have used the results of Bulboacă [5] and obtained sufficient conditions for certain normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in Δ with $q_1(0) = 1$ and $q_2(0) = 1$. Shanmugam et al. [19] obtained sufficient conditions for a normalized analytic function f(z) to satisfy

$$q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z)$$
 and $q_1(z) \prec \frac{z^2f'(z)}{\{f(z)\}^2} \prec q_2(z)$

where q_1 and q_2 are given univalent functions in Δ with $q_1(0) = 1$ and $q_2(0) = 1$.

In [2], for functions $f \in \mathcal{A}$ such that $\delta > 0$,

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\delta}\right\} > 0, \qquad z \in \Delta,$$

a class of Bazilevic type functions was considered and certain properties were studied. In this paper motivated by Liu [11], we define a class

$$B(\lambda, \delta, A, B) := \left\{ f \in \mathcal{A} : (1 - \lambda) \left(\frac{f(z)}{z} \right)^{\delta} + \lambda \frac{z f'(z)}{f(z)} \left(\frac{f(z)}{z} \right)^{\delta} \prec \frac{1 + Az}{1 + Bz} \right\},\,$$

where $\delta > 0$, $\lambda \ge 0$, $-1 \le B < A \le 1$ and studied certain interesting properties based on subordination. Further we obtained a sandwich result for functions in the class $B(\lambda, \delta, A, B)$.

2. Preliminaries

For our present investigation, we shall need the following definition and results.

Definition 2.1 ([14, Definition 2, p. 817]). Denote by Q, the set of all functions f(z) that are analytic and injective on $\overline{\Delta} - E(f)$, where

$$E(f) = \left\{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \right\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 2.1 ([13, Theorem 3.4h, p. 132]). Let q(z) be univalent in the unit disk Δ and θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(w) \neq 0$ when $w \in q(\Delta)$. Set $Q(z) = zq'(z)\phi(q(z)), h(z) = \theta(q(z)) + Q(z)$. Suppose that

(1) Q(z) is starlike univalent in Δ , and

(2)
$$\Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0$$
 for $z \in \Delta$.

If

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 2.2 ([19]). Let q be a convex univalent function in Δ and $\psi, \gamma \in \mathbb{C}$ with

$$\Re\left\{1+\frac{zq''(z)}{q'(z)}+\frac{\psi}{\gamma}\right\}>0.$$

If p(z) is analytic in Δ and

$$\psi p(z) + \gamma z p'(z) \prec \psi q(z) + \gamma z q'(z)$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 2.3 ([5]). Let q(z) be convex univalent in the unit disk Δ and ϑ and φ be analytic in a domain D containing $q(\Delta)$. Suppose that

- (1) $\Re \left[\vartheta'(q(z)) / \varphi(q(z)) \right] > 0$ for $z \in \Delta$,
- (2) $zq'(z)\varphi(q(z))$ is starlike univalent in Δ .

If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$, with $p(\Delta) \subseteq D$, and $\vartheta(p(z)) + zp'(z)\varphi(p(z))$ is univalent in Δ , and

(2.1)
$$\vartheta(q(z)) + zq'(z)\varphi(q(z)) \prec \vartheta(p(z)) + zp'(z)\varphi(p(z)),$$

then $q(z) \prec p(z)$ and q(z) is the best subordinant.

Lemma 2.4 ([14, Theorem 8, p. 822]). Let q be convex univalent in Δ and $\gamma \in \mathbb{C}$. Further assume that $\Re [\overline{\gamma}] > 0$. If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$, $p(z) + \gamma z p'(z)$ is univalent in Δ , then

$$q(z) + \gamma z q'(z) \prec p(z) + \gamma z p'(z)$$

implies $q(z) \prec p(z)$ and q(z) is the best subordinant.

For two functions $f(z)=z+\sum_{n=2}^\infty a_nz^n$ and $g(z)=z+\sum_{n=2}^\infty b_nz^n$, the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n =: (g * f)(z).$$

For $\alpha_j \in \mathbb{C}$ (j = 1, 2, ..., l) and $\beta_j \in \mathbb{C} \setminus \{0, -1, -2, ...\}$ (j = 1, 2, ..., m), the generalized hypergeometric function ${}_{l}F_{m}(\alpha_1, ..., \alpha_l; \beta_1, ..., \beta_m; z)$ is defined by the infinite series

$${}_{l}F_{m}(\alpha_{1},\ldots,\alpha_{l};\beta_{1},\ldots,\beta_{m};z) := \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\cdots(\alpha_{l})_{n}}{(\beta_{1})_{n}\cdots(\beta_{m})_{n}} \frac{z^{n}}{n!}$$
$$(l \leq m+1; l, m \in \mathbb{N}_{0} := \{0,1,2,\ldots\})$$

where $(a)_n$ is the Pochhammer symbol defined by

$$(a)_n := \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & (n=0); \\ a(a+1)(a+2)\cdots(a+n-1), & (n\in\mathbb{N} := \{1,2,3\ldots\}). \end{cases}$$

Corresponding to the function

$$h(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z) := z_l F_m(\alpha_1,\ldots,\alpha_l;\beta_1,\ldots,\beta_m;z),$$

the Dziok-Srivastava operator [7] (see also [8, 20]) $H_m^l(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m)$ is defined by the Hadamard product

(2.2)
$$H_{m}^{l}(\alpha_{1}, \dots, \alpha_{l}; \beta_{1}, \dots, \beta_{m}) f(z)$$

$$:= h(\alpha_{1}, \dots, \alpha_{l}; \beta_{1}, \dots, \beta_{m}; z) * f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{(\alpha_{1})_{n-1} \cdots (\alpha_{l})_{n-1}}{(\beta_{1})_{n-1} \cdots (\beta_{m})_{n-1}} \frac{a_{n}z^{n}}{(n-1)!} .$$

For brevity, we write

$$H_m^l[\alpha_1]f(z) := H_m^l(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_m)f(z).$$

It is easy to verify from (2.2) that

(2.3)
$$z(H_m^l[\alpha_1]f(z))' = \alpha_1 H_m^l[\alpha_1 + 1]f(z) - (\alpha_1 - 1)H_m^l[\alpha_1]f(z).$$

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear operator [9], the Carlson-Shaffer linear operator L(a,c) [6], the Ruscheweyh derivative operator D^n [18], the generalized Bernardi-Libera-Livingston linear integral operator (cf. [3], [10], [12]) and the Srivastava-Owa fractional derivative operators (cf. [16], [17]).

The main object of the present paper is to find sufficient conditions for certain normalized analytic functions f(z) to satisfy

$$q_1(z) \prec \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \prec q_2(z)$$

where q_1 and q_2 are given univalent functions in Δ . Also, we obtain the number of known results as special cases.

3. MAIN RESULTS

We begin with the following:

Theorem 3.1. Let q(z) be univalent in Δ , $\lambda \in C$ and $\alpha_1 > 0$, $\delta > 0$. Suppose q(z) satisfies

(3.1)
$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} + \frac{\lambda}{\delta}\right\} > 0.$$

If $f \in A$ satisfies the subordination,

$$(3.2) \quad (1 - \lambda \alpha_1) \left(\frac{H_m^l[\alpha_1] f(z)}{z}\right)^{\delta} + \lambda \alpha_1 \left(\frac{H_m^l[\alpha_1] f(z)}{z}\right)^{\delta} \left(\frac{H_m^l[\alpha_1 + 1] f(z)}{H_m^l[\alpha_1] f(z)}\right) \\ \qquad \qquad \prec q(z) + \frac{\lambda}{\delta} z q'(z),$$

then

$$\left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \prec q(z)$$

and q(z) is the best dominant.

Proof. Define the function p(z) by

(3.3)
$$p(z) := \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta}.$$

Then

$$\frac{zp'(z)}{\delta} := \alpha_1 \left(\frac{H_m^l[\alpha_1]f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1+1]f(z)}{H_m^l[\alpha_1]f(z)} - 1 \right),$$

hence the hypothesis (3.2) of Theorem 3.1 yields the subordination:

$$p(z) + \frac{\lambda z p'(z)}{\delta} \prec q(z) + \frac{\lambda z q'(z)}{\delta}.$$

Now Theorem 3.1 follows by applying Lemma 2.2 with $\psi = 1$ and $\gamma = \frac{\lambda}{\delta}$.

When $l=2, m=1, \alpha_1=a, \alpha_2=1,$ and $\beta_1=c$ in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let q(z) be univalent in Δ , $\lambda \in C$ and $\alpha_1 > 0$, $\delta > 0$. Suppose q(z) satisfies (3.1). If $f \in A$ and satisfies the subordination,

(3.4)
$$(1 - \lambda a) \left(\frac{L(a,c)f(z)}{z}\right)^{\delta} + \lambda a \left(\frac{L(a,c)f(z)}{z}\right)^{\delta} \left(\frac{L(a+1,c)f(z)}{L(a,c)f(z)}\right)$$

$$\prec q(z) + \frac{\lambda}{\delta} z q'(z),$$

then

$$\left(\frac{L(a,c)f(z)}{z}\right)^{\delta} \prec q(z)$$

and q(z) is the best dominant.

By taking l=1, m=0 and $\alpha_1=1$ in Theorem 3.1, we get the following corollary.

Corollary 3.3. Let q(z) be univalent in Δ , $\lambda \in C$ and $\alpha_1 > 0$, $\delta > 0$. Suppose q(z) satisfies (3.1). If $f \in A$ and satisfies the subordination,

$$(3.5) (1-\lambda)\left(\frac{f(z)}{z}\right)^{\delta} + \lambda \left(\frac{f(z)}{z}\right)^{\delta} \left(\frac{zf'(z)}{f(z)}\right) \prec q(z) + \frac{\lambda}{\delta} zq'(z),$$

then

$$\left(\frac{f(z)}{z}\right)^{\delta} \prec q(z)$$

and q(z) is the best dominant.

Corollary 3.4. Let $-1 \le B < A \le 1$ and (3.1) hold. If $f \in A$ and

$$(1 - \lambda \alpha_1) \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} + \lambda \alpha_1 \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1 + 1] f(z)}{H_m^l[\alpha_1] f(z)} \right)$$

$$\prec \frac{\lambda (A - B) z}{\delta (1 + B z)^2} + \frac{1 + A z}{1 + B z},$$

then

$$\left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Theorem 3.5. Let q(z) be univalent in Δ , λ , $\delta \in \mathbb{C}$. Suppose q(z) satisfies

(3.6)
$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0.$$

If $f \in A$ *satisfies the subordination:*

(3.7)
$$1 + \gamma \delta \alpha_1 \left(\frac{H_m^l[\alpha_1 + 1]f(z)}{H_m^l[\alpha_1]f(z)} - 1 \right) \prec 1 + \gamma \frac{zq'(z)}{q(z)},$$

then

$$\left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \prec q(z)$$

and q(z) is the best dominant.

Proof. Define the function p(z) by

$$p(z) = \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta}.$$

It is clear that p(0) = 1 and p(z) is analytic in Δ . By using the identity (2.3), from (3.3) we get,

(3.8)
$$\frac{zp'(z)}{p(z)} = \alpha_1 \delta \left(\frac{H_m^l[\alpha_1 + 1]f(z)}{H_m^l[\alpha_1]f(z)} - 1 \right).$$

Using (3.8) in (3.7), we see that the subordination becomes

$$1 + \gamma \frac{zp'(z)}{p(z)} \prec 1 + \gamma \frac{zq'(z)}{q(z)}.$$

By setting

$$\theta(w) = 1$$
 and $\varphi(w) = \frac{\gamma}{w}$,

we observe that φ and θ are analytic in $\mathbb{C} \setminus \{0\}$. Also we see that

$$Q(z) := zq'(z)\varphi(q(z)) = \frac{\gamma zq'(z)}{q(z)},$$

and

$$h(z) := \vartheta(q(z)) + Q(z) = 1 + \gamma \frac{zq'(z)}{q(z)}.$$

It is clear that Q(z) is starlike univalent in Δ and

$$\Re \frac{zh'(z)}{Q(z)} = \Re \left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} \right] \ge 0.$$

By the hypothesis of Theorem 3.5, the result now follows by an application of Lemma 2.1.

Specializing the values of $l=1, m=0, \alpha_1=1$ and $q(z)=\frac{1}{(1-z)^{2b}}$ $(b \in C-\{0\}), \gamma=\frac{1}{b}$ and $\delta=1$ in Theorem 3.5 above, we have the following corollary as stated in [21].

Corollary 3.6. Let b be a non zero complex number. If $f \in A$ and

$$1 + \frac{1}{b} \left[\frac{zf'(z)}{f(z)} - 1 \right] \prec \frac{1+z}{1-z},$$

then

$$\frac{f(z)}{z} \prec \frac{1}{(1-z)^{2b}}$$

and $\frac{1}{(1-z)^{2b}}$ is the best dominant.

Choosing the values of $l=1, m=0, \alpha_1=1$ and $q(z)=\frac{1}{(1-z)^{2ab}}$ $(b \in C-\{0\}), \gamma=\frac{1}{b}$ and $\delta=a\neq 0$ in Theorem 3.5 above, we have the following corollary as stated in [15].

Corollary 3.7. Let b be a non zero complex number. If $f \in A$ and

$$1 + \frac{1}{b} \left[\frac{zf'(z)}{f(z)} - 1 \right] \prec \frac{1+z}{1-z},$$

then

$$\left(\frac{f(z)}{z}\right)^a \prec \frac{1}{(1-z)^{2ab}}$$

where $a \neq 0$ is a complex number and $\frac{1}{(1-z)^{2ab}}$ is the best dominant.

Similarly for $l=2, m=1, \alpha_1=1, \alpha_2=1, \beta_1=1$ and $q(z)=\frac{1}{(1-z)^{2b}}$ $(b \in C-\{0\}), \gamma=\frac{1}{b}$ and $\delta=1$ in Theorem 3.5 above, we get the following result as stated in [21].

Corollary 3.8. Let b be a non zero complex number. If $f \in A$ and

$$1 + \frac{1}{b} \left[\frac{zf''(z)}{f'(z)} - 1 \right] \prec \frac{1+z}{1-z},$$

then

$$f'(z) \prec \frac{1}{(1-z)^{2b}}$$

and $\frac{1}{(1-z)^{2b}}$ is the best dominant.

Next, applying Lemma 2.3, we have the following theorem.

Theorem 3.9. Let q(z) be convex univalent in Δ , $\lambda \in C$ and $0 < \delta < 1$. Suppose $f \in A$ satisfies

(3.9)
$$\operatorname{Re}\left\{\frac{\delta}{\lambda}\right\} > 0$$

and $\left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \in H[q(0),1] \cap Q$. Let

$$(1 - \lambda \alpha_1) \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} + \lambda \alpha_1 \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1 + 1] f(z)}{H_m^l[\alpha_1] f(z)} \right)$$

be univalent in Δ . If $f \in A$ satisfies the superordination,

$$(3.10) q(z) + \frac{\lambda}{\delta} z q'(z) \prec (1 - \lambda \alpha_1) \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta}$$

$$+ \lambda \alpha_1 \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1] f(z)}{H_m^l[\alpha_1] f(z)} \right)$$

then

$$q(z) \prec \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta}$$

and q(z) is the best subordinant.

Proof. Define the function p(z) by

(3.11)
$$p(z) := \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta}.$$

Using (3.11), simple computation produces

$$\frac{zp'(z)}{\delta} := \alpha_1 \left(\frac{H_m^l[\alpha_1]f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1+1]f(z)}{H_m^l[\alpha_1]f(z)} - 1 \right),$$

then

$$q(z) + \frac{\lambda}{\delta} z q'(z) \prec p(z) + \frac{\lambda}{\delta} z p'(z).$$

By setting $\vartheta(w) = w$ and $\phi(w) = \frac{\lambda}{\delta}$, it is easily observed that $\vartheta(w)$ is analytic in C. Also, $\phi(w)$ is analytic in $C \setminus \{0\}$ and $\phi(w) \neq 0$, $(w \in C \setminus \{0\})$.

Since q(z) is a convex univalent function, it follows that

$$\Re\left\{\frac{\vartheta'(q(z))}{\phi(q(z))}\right\} = \Re\left\{\frac{\delta}{\lambda}\right\} > 0, \quad z \in \Delta, \quad \delta, \lambda \in C, \delta, \lambda \neq 0.$$

Now Theorem 3.9 follows by applying Lemma 2.3.

Concluding the results of differential subordination and superordination, we state the following sandwich result.

Theorem 3.10. Let q_1 and q_2 be convex univalent in Δ , $\lambda \in \mathbb{C}$ and $0 < \delta < 1$. Suppose q_2 satisfies (3.1) and q_1 satisfies (3.9). If $\left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q$,

$$(1 - \lambda \alpha_1) \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} + \lambda \alpha_1 \left(\frac{H_m^l[\alpha_1] f(z)}{z} \right)^{\delta} \left(\frac{H_m^l[\alpha_1 + 1] f(z)}{H_m^l[\alpha_1] f(z)} \right)$$

is univalent in Δ . If $f \in \mathcal{A}$ satisfies

then

$$q_1(z) \prec \left(\frac{H_m^l[\alpha_1]f(z)}{z}\right)^{\delta} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and best dominant.

REFERENCES

- [1] R.M. ALI, V. RAVICHANDRAN, M. HUSSAIN KHAN AND K.G. SUBRAMANIAN, Differential sandwich theorems for certain analytic functions, *Far East J. Math. Sci.*, **15**(1) (2005), 87–94.
- [2] I.E. BAZILEVIC, On a case of integrability in quadratures of the Loewner-kuarev equation, *Mat. Sb.*, **37** (1955), 471–476.
- [3] S.D. BERNARDI, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.*, **135** (1969), 429–446.
- [4] T. BULBOACĂ, A class of superordination-preserving integral operators, *Indag. Math.*, *New Ser.*, **13**(3) (2002), 301–311.
- [5] T. BULBOACĂ, Classes of first order differential superordinations, *Demonstr. Math.*, **35**(2) (2002), 287–292.
- [6] B.C. CARLSON AND D.B. SHAFFER, Starlike and prestarlike hypergeometric functions, *SIAM J. Math. Anal.*, **15**(4) (1984), 737–745.
- [7] J. DZIOK AND H.M. SRIVASTAVA, Classes of analytic functions associated with the generalized hypergeometric function, *Appl. Math. Comput.*, **103**(1) (1999), 1–13.
- [8] J. DZIOK AND H.M. SRIVASTAVA, Certain subclasses of analytic functions associated with the generalized hypergeometric function, *Integral Transforms Spec. Funct.*, **14**(1) (2003), 7–18.
- [9] JU. E. HOHLOV, Operators and operations on the class of univalent functions, *Izv. Vyssh. Uchebn. Zaved. Mat.*, **10** (197) (1978) 83–89.

- [10] R.J. LIBERA, Some classes of regular univalent functions, *Proc. Amer. Math. Soc.*, **16** (1965), 755–758.
- [11] M.S. LIU, Properties for some subclasses of analytic functions, *Bull. Insti. Math. Acad. Sinica.*, **30**(1) (2002), 9–26.
- [12] A.E. LIVINGSTON, On the radius of univalence of certain analytic functions, *Proc. Amer. Math. Soc.*, **17** (1966), 352–357.
- [13] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations: Theory and Applications*, Marcel Dekker Inc., New York, (2000).
- [14] S.S. MILLER AND P.T. MOCANU, Subordinants of differential superordinations, *Complex Variables*, **48**(10) (2003), 815–826.
- [15] M. OBRADOVIC, M.K. AOUF AND S. OWA, On some results for starlike functions of complex order, *Pub. De. L' Inst. Math.*, **46** (60) (1989), 79–85.
- [16] S. OWA, On the distortion theorems I, *Kyungpook Math. J.*, **18**(1) (1978), 53–59.
- [17] S. OWA AND H.M. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions, *Canad. J. Math.*, **39**(5) (1987), 1057–1077.
- [18] S. RUSCHEWEYH, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, **49** (1975), 109–115.
- [19] T.N. SHANMUGAM, V. RAVICHANDRAN AND S. SIVASUBRAMANIAN, Differential sandwich theorems for some subclasses of analytic functions, *Aust. J. Math. Anal. Appl.*, **3**(1) (2006), Art. 8.
- [20] H.M. SRIVASTAVA, Some families of fractional derivative and other linear operators associated with analytic, univalent and multivalent functions, *Proc. International Conf. Analysis and its Applications*, Allied Publishers Ltd, New Delhi (2001), 209–243.
- [21] H.M. SRIVASTAVA AND A.Y. LASHIN, Some applications of the Briot-Bouquet differential subordination, *J. Inequal. Pure Appl. Math.*, **6**(2) (2005), Art. 41. [ONLINE: http://jipam.vu.edu.au/article.php?sid=510].