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ABSTRACT. The purpose of this paper is to introduce and study a new kind of generalized
strongly nonlinear operator inclusion problems involving generalizedccretive mapping in
Banach spaces. By using the resolvent operator technique for genenaliaedretive map-

ping due to Huang and Fang, we also prove the existence theorem of the solution for this kind
of operator inclusion problems and construct a new class of perturbed iterative algorithm with
mixed errors for solving this kind of generalized strongly nonlinear operator inclusion problems

in Banach spaces. Further, we discuss the convergence and stability of the iterative sequence
generated by the perturbed algorithm. Our results improve and generalize the corresponding
results of [3[6, 11/, 12].
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1. INTRODUCTION

Let X be a real Banach space ahd X — 2% is a multi-valued operator, whep& denotes
the family of all the nonempty subsets &f. The following operator inclusion problem of
findingx € X such that

(1.1) 0 € T(u)

has been studied extensively because of its role in the modelization of unilateral problems, non-
linear dissipative systems, convex optimizations, equilibrium problems, knowledge engineer-
ing, etc. For details, we can refer 1o [1]= [6]) [8]\=[15] and the references therein. Concerning
the development of iterative algorithms for the problé¢m](1.1) in the literature, a very common
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assumption is thdf’ is a maximal monotone operator@raccretive operator. Whéeh is max-
imal monotone ofn-accretive, many iterative algorithms have been constructed to approximate
the solutions of the problerp (1.1).

In many practical caseg, is split in the formT" = F + M, whereF, M : X — 2% are two
multi-valued operators. So the problgm {1.1) reduces to the following: #@d\ such that

(1.2) 0€ F(x)+ M(x),

which is called the variational inclusion problem. When bgtand M/ are maximal monotone
or M is m-accretive, some approximate solutions for the problenj (1.2) have been developed
(seel[10, 18] and the references therein)\/lt= 0y, wheredy is the subdifferential of a proper
convex lower semi-continuous functionat X — R U {+oo}, then the problenj (112) reduces
to the variational inequality problem:

Findz € X andu € F(z) such that

(1.3) (u,y —x) +o(y) —p(x) 20, yeX.

Many iterative algorithms have been established to approximate the solution of the problem
(1.3) whenF' is strongly monotone. Recently, the problém{1.2) was studied by several authors
whenF andM need not to be maximal monotoneraraccretive. Further, Ding [3], Huang![6],

and Lan et al.[[11] developed some iterative algorithms to solve the following quasi-variational
inequality problem of finding: € X andu € F(z), v € V(z) such that

(1.4) (u,y —x)) +o(y,v) —p(z,v) >0, VyeX

by introducing the concept of subdifferentiab(-, ¢) of a proper functionap(-,-) for t € X,
which is defined by

00, t) ={f e X :0(y,t) — oz, t) > (f,y —x)), yecX},

wherep(-,t) : X — RU {+o0o} is a proper convex lower semi-continuous functional for all
te X.

It is easy to see that the problem (1.4) is equivalent to the following:

Findx € X such that

(1.5) 0 € F(x) 4 dp(x,V(x)).

Recently, Huang and Fang [7] first introduced the concept of a generalizsttretive map-
ping, which is a generalization of an-accretive mapping, and gave the definition and prop-
erties of the resolvent operator for the generalize@dccretive mapping in a Banach space.
Later, by using the resolvent operator technique, which is a very important method for find-
ing solutions of variational inequality and variational inclusion problems, a number of nonlin-
ear variational inclusions and many systems of variational inequalities, variational inclusions,
complementarity problems and equilibrium problems. Bi, Huang, Jin and other authors intro-
duced and studied some new classes of nonlinear variational inclusions involving generalized
m-accretive mappings in Banach spaces, they also obtained some new corresponding existence
and convergence results (se€,[[2,15, 8] and the references therein). On the other hand, Huang,
Lan, Zeng, Wang et al. discussed the stability of the iterative sequence generated by the algo-
rithm for solving what they studied (se€ [6,/11] 15| 19]).

Motivated and inspired by the above works, in this paper, we introduce and study the follow-
ing new class of generalized strongly nonlinear operator inclusion problems involving general-
izedm-accretive mappings:

Findz € X such that{p(z), g(z)) € Dom M and

(1.6) feN(S(x),T(x),U(x)) + M(p(x), g(x)),
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where f is an any given element oX, a real Banach spacé,7,U,p,g : X — X and
N: X x X x X — X are single-valued mappings andl: X x X — 2% is a generalizech-
accretive mapping with respect to the first argumenitdenotes the family of all the nonempty
subsets ofX. By using the resolvent operator technique for generalizestcretive mappings
due to Huang and Fangl[7, 8], we prove the existence theorems of the solution for these types
of operator inclusion problems in Banach spaces, and discuss the convergence and stability of a
new perturbed iterative algorithm for solving this class of nonlinear operator inclusion problems
in Banach spaces. Our results improve and generalize the corresponding results of [3,16, 11, 12].
We remark that for a suitable choice 6fthe mappingsV,n, S, T, U, M, p, g and the space
X, a number of known or new classes of variational inequalities, variational inclusions and
corresponding optimization problems can be obtained as special cases of the nonlinear quasi-
variational inclusion problenj (1.6). Moreover, these classes of variational inclusions provide
us with a general and unified framework for studying a wide range of interesting and important
problems arising in mechanics, optimization and control, equilibrium theory of transportation
and economics, management sciences, and other branches of mathematical and engineering
sciences, etc. See for more detalls [1,13,/4])6, 9, 11, 15, 17, 18] and the references therein.

2. GENERALIZED m-ACCRETIVE MAPPING

Throughout this paper, leX be a real Banach space with dual space (-, -) the dual pair
betweenX andX*, and2X denote the family of all the nonempty subsetsofThe generalized
duality mapping/, : X — 2% is defined by

Jo(z) = {z" € X" (2,2") = ||z||*, [|o"|| = [[«]*""}, Ve X,
whereq > 1 is a constant. In particulay is the usual normalized duality mapping. It is well
known that, in generalj,(z) = ||z||72J:(z) for all z # 0 and.J, is single-valued ifX* is
strictly convex (see, for example, [16]). ¥ = H is a Hilbert space, ther, becomes the
identity mapping ofH. In what follows we shall denote the single-valued generalized duality

mapping byy,,.
Definition 2.1. The mapping; : X — X is said to be
(1) a-strongly accretive, if for any, y € X, there existg,(x — y) € J,(z — y) such that
(9(x) = g(¥), Jo(z —y)) = allz -yl

wherea > 0 is a constant;
(2) p-Lipschitz continuous, if there exists a constgnt 0 such that

lg(x) — gl < Bllz —yll, Vz,yeX.

Definition 2.2. Leth, g : X — X be two single-valued mappings. The mappvMg X x X x
X — X is said to be

(1) o-strongly accretive with respect foin the first argument, if for any., y € X, there
existsj,(z — y) € J,(z — y) such that

<N(h($), K ) - N(h(y)v " ')ajq(x - y)> Z 0-”:1j - quy
wheres > 0 is a constant;

(2) ¢-relaxed accretive with respect gan the second argument, if for anyy € X, there
existsj,(z —y) € J,(z — y) such that

(N(9(r),)) = N, 9(y), ), Jg(x —y)) = —cllz — yl|*
whereg > 0 is a constant;
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(3) e-Lipschitz continuous with respect to the first argument, if there exists a comastant
such that

HN(JZ,',')—N(y,-,')” S€||J"_y”7 Vl‘,yEX.

Similarly, we can define thg, v-Lipschitz continuity in the second and third argument
of N(-,-,-), respectively.

Definition 2.3 ([7])). Letn : X x X — X* be a single-valued mapping arid: X — 2% be a
multi-valued mapping. Thed is said to be

(1) n-accretive if
(u—v,n(z,y)) >0, Vr,ye X ue A),veAy);

(2) generalizedn-accretive ifA is n-accretive andl + \A)(X) = X for all (equivalently,
for some)\ > 0.

Remark 2.1. Huang and Fang gave one example of the generalizedcretive mapping in
[7]. If X = X* = H is a Hilbert space, then (1), (2) of Definitipn P.3 reduce to the definition
of n-monotonicity and maximah-monotonicity respectively; ifX is uniformly smooth and
n(z,y) = Jo(xz — y), then (1) and (2) of Definitioh 2|3 reduce to the definitions of accretivity
andme-accretivity in uniformly smooth Banach spaces, respectively (sée [7, 8]).

Definition 2.4. The mapping; : X x X — X*is said to be
(1) o-strongly monotone, if there exists a constant 0 such that

(x —y,n(z,y)) > dllz —yl*, Va,yeX;
(2) 7-Lipschitz continuous, if there exists a constant 0 such that
In(z,y)|| < 7llz —yl, Vr,yeX.

The modules of smoothness &fis the functionpx : [0, 00) — [0, c0) defined by

1
px(t) =supq sllz +yll +llo—yll =1 flzl < 1, flyl <t .

A Banach spacg« is called uniformly smooth ifim;_.q ”Xt(t) = 0 and X is calledg-
uniformly smooth if there exists a constant- 0 such thapx < ct?, whereq > 1is a

real number.

It is well known that Hilbert spaced,, (or /,) spaces] < p < oo, and the Sobolev spaces
Wmp 1 < p < oo, are allg-uniformly smooth. In the study of characteristic inequalities in
g-uniformly smooth Banach spaces, Xu[16] proved the following result:

Lemma 2.2. Letq > 1 be a given real number and be a real uniformly smooth Banach
space. ThetX is ¢g-uniformly smooth if and only if there exists a constant- 0 such that for
all z,y € X, j,(x) € J,(x), there holds the following inequality

Iz +yll" < l[zl|* + ¢y, Jo(2)) + cqllyll.

In [7], Huang and Fang show that for apy> 0, inverse mapping/ +pA)~! is single-valued,
if n: X x X — X*is strict monotone and : X — 2% is a generalizedh-accretive mapping,
where[ is the identity mapping. Based on this fact, Huang and Fanhg [7] gave the following
definition:
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Definition 2.5. Let A : X — 2% be a generalizedh-accretive mapping. Then the resolvent
operatorJ/ for A is defined as follows:

Jh(2) = (I +pA)7Y(2), VzeX,
wherep > 0 isaconstantang : X x X — X*is a strictly monotone mapping.

Lemma 2.3([[7,/8]). Letn : X x X — X* ber-Lipschitz continuous anéstrongly monotone.
LetA: X — 2% be a generalizedi-accretive mapping. Then the resolvent operatfr for
Ais Lipschitz continuous with constafti.e.,

-
174(x) = Tl < <llz —yll,  Va,y e X
)

3. EXISTENCE THEOREMS

In this section, we shall give the existence theorem of probfem (1.6). Firstly, from the defi-
nition of the resolvent operator for a generalizeeaccretive mapping, we have the following
lemma:

Lemma 3.1. z is the solution of problen (1].6) if and only if
(3.1) (@) = Jfr o (@) = p(N(S(2), T(x),U(x)) - )],
whereJy, oy = (I + pM(-,g(x)))"! andp > 0 is a constant.

Theorem 3.2.Let X be ag-uniformly smooth Banach spacge; X x X — X* ber-Lipschitz
continuous and-strongly monotone)/ : X x X — 2% be a generalized-accretive map-
ping with respect to the first argument, and mappisgs,U : X — X bex, u, v-Lipschitz
continuous, respectively. Lget: X — X bea-strongly accretive and-Lipschitz continuous,

g . X — X be-Lipschitz continuous) : X x X x X — X beo-strongly accretive with
respect toS in the first argument and-relaxed accretive with respect 6 in the second ar-
gument, and, &, ~-Lipschitz continuous in the first, second and third argument, respectively.
Suppose that there exist constapts 0 and( > 0 such that for each, y, z € X,

(3.2) |0 2) = T @) < ¢l =l
and

h=Cot (14 3) (1= ga+c,B7)1 <1,
(3.3)

T [(1 —qp(o — ) + cgp(er + Ep)T) s + pw} <O(1 = h),
wherec, is the same as in Lemrpa .2, then problem]| (1.6) has a unique solution

Proof. From Lemma 31, problenm (1.6) is equivalent to the fixed probJeni (3.1), equgtion (3.1)
can be rewritten as follows:

=1 = p(x) = Ty P(@) = p(N(S(2), T(x), U(x)) = £).
For everyr € X, take

(3.4) Qz) = = — p(x) = Ty gy lP() = p(N(S(2), T'(2), U(z)) = f)].
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Thenz* is the unique solution of probler (1.6) if and only:if is the unique fixed point of).
In fact, it follows from [3.2),[(3.4) and Lemnja 2.3 that

Q@) - Q)
<l =y = (0() = PO + | i o P(@) = pN(S(2), T(@), U(x)) = )]
= TirtogtnPW) = PIN(S W), T(w), Uw)) - 1]
< e =y = (pl@) = PO + | Ty gy (&) = p(N(S(@). (@), Ulz)) = £)]
Ty aten P9) = P(N(S (), (), U ) = 1]
TrtgenP@W) = p(N(S(y). T(y),U(y)) — f)]
= TirtoatanPW) = PIN(S (). T(w), Uw)) - £
<(1+ f)nx—y—(u p)
+ Hlle =y = pIN(S(@), T(), U(x)) = N(S(y), T(), U(a))
+ (VS T@LUE) ~ NS T6), U
(3.5) +pIIN(S (), T(y), Ulx)) = N(S(y), T(y), Uy)II}
+ Cllga) = gl

By the hypothesis of, p, S,T,U, N and Lemma 2]2, now we know there exigfs> 0 such
that

(3.6) lg(x) = gl < el = yll,
(3.7) Iz =y — (p(z) —p)I" < (1 = ga+ ¢ 5) |z — |7,
(3.8) IN(S(y), T(y), U(x)) = N(S(y), T(y), Ul < yvlz -yl

-
S
N

+ (N(S(y), T(x) - )
< [l = yll* = ap{(N (5(2), T'(x), U(z))
+ (N(S(y), T(x) )

N ~—
= 8 =
~—
~—

~—
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@
=
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\%/_

5o
B
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8
N—
S~—
S~—
.

)
—
<
N—
N

©
=
S 93 g
=
=S
=

£

O

< lz —yl*— gp[(N
+(N(S(y), T(x),

U U(x)),
+ ¢ [IN(S(2), T(2), U(z)) = N(S(y), T(x), U(x))||
+IN(S (), T(x), U(x)) = N(S(y), T'(y), U(x))|]*
(3.9) < [L—=qplo = <) + cop(er + &) ]l =y
Combining [3.5) —{(319), we get
(3.10) 1Q(x) — Q)| < 0llx —yll,
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where
(3.11) 0=h+ g [(1 — 4plo = §) + cop(er + €))7 + pyv]
h=C_+ (1 + %) (1-— qoz—i—cqﬁq)%.
It follows from (3.3) thatd < § < 1 and so@ : X — X is a contractive mapping, i.&) has a
unique fixed point inX. This completes the proof. O

Remark 3.3. If X is a 2-uniformly smooth Banach space and there existd) such that
(h=Co+ (1—1—%) V1 —2a+ 3?2 <1,

0<p<® B qu < Jolen +Ep),

(0 —¢) > dyv(1 — h) + /[ealer + Eu)? — y22][72 — 62(1 — h)?],

_ _r(o=9)+8yw(h-1) [r(0—6)—6yv(1—h)]*—[ea(entép)® =~ v [r2 —62(1-h)?]
P T Tlealentem)®—207] Tlea(entEn)2 7207 ’

then ) holds. We note that the Hilbert space @pdor [,) (2 < p < oo) Spaces are
2-uniformly Banach spaces.

<

4. PERTURBED ALGORITHM AND STABILITY

In this section, by using the following definition and lemma, we construct a new perturbed
iterative algorithm with mixed errors for solving problejn (1.6) and prove the convergence and
stability of the iterative sequence generated by the algorithm.

Definition 4.1. Let S be a selfmap o, =, € X, and letx,,.; = h(S, z,,) define an iteration
procedure which yields a sequence of poifits}> , in X. Suppose thafr € X : Sz =z} #
() and{z, }5°, converges to a fixed point of S. Let{u,} C X andlete,, = ||u,+1—h(S, u,)|-
If lim e, = 0 implies thatu,, — z*, then the iteration procedure defineddy,, = h(S,z,) is
said to beS-stable or stable with respect o

Lemma 4.1 ([12]). Let {a,},{b.},{c.} be three nonnegative real sequences satisfying the
following condition:
there exists a natural numbey, such that

a1 < (1 —tp)an + bptn + ¢, Y0 > ng,
wheret,, € [0,1], > "7 t, = 00, limy, oo b, = 0, >~ ¢, < 00. Thena,, — 0(n — 00).

The relation [(3.1) allows us to construct the following perturbed iterative algorithm with
mixed errors.

Algorithm 4.1. Stepl. Chooser, € X.
Step2. Let

( Tnt1 = (1 — an)Tn + anlyn — p(Yn)
F 019t PWR) = PN (S (W), T(yn) Ulyn)) — )] + antin + wa,

Yn = (1 = Bn)n + Bulzn — pzn)
\ +J§4(wg(mn))(p<x”) - p(N(S(x”)’ T(mn)7 U<5Un)) - f))] + Un,

Step3. Choose sequencés,, }, {4,.}, {un}, {v,} and{w,} such that fom > 0, {a,.}, {5, }
are two sequences |, 1}, {u, }, {v.},{w,} are sequences i satisfying the following con-
ditions:

(4.2)
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(1) un = ug, + uy;
(i) limy,— oo [|u,]] = limy oo [|on|| = 0;
(i) > oo llupll < oo, 32774 llwnll < oo,
Step4. If z,41, Yn, i, B, un, v, andw,, satisfy [4.1) to sufficient accuracy, go Step5;
otherwise, set := n + 1 and return tdStep2.
Stepb. Let{z,} be any sequence i and defing{¢,,} by

= [2nt1 = {(1 = an)zn + anlty — p(tn)
F Iy () = POV (), T(6), U(t) = )]+ @t + 0}

tn = (1 - Bn)zn + ﬁn[zn - p(zn)
o (@) — PN (S(2), T(2), Uen)) — )] 4 v

Step6. If €., znt1, tn, Qn, Bu, Un, v, andw, satisfy [4.2) to sufficient accuracy, stop;
otherwise, set := n + 1 and return tdtep3.

Theorem 4.2. Suppose tha, S, T, U, p, g, N,n and M are the same as in Theorgm |32,

is defined by[(3.11). I}°°,a, = oo and conditions[(3]2)[ (3}3) hold, then the perturbed
iterative sequencéz, } defined by[(4]1) converges strongly to the unique solution of problem

(1.6). Moreover, if there exists € (0, «,,] for all n > 0, thenlim,,_. z, = z* if and only if
lim,, . £, = 0, Wheres,, is defined by (4]2).

Proof. From Theorer 3]2, we know that problgm (1.6) has a unique solutienX . It follows
from (4.1), [3.11) and the proof df (3]10) in Theorem]| 3.2 that

(4.2)

[ zn41 — 27|

< (1= an)llzn — 2"l + anbllyn — 27| + an([Jug ]| + lul) + llwn
(4.3) < (1= an)llon — 2" + nbllyn — 27| + ol || + (]l + llwnl)-
Similarly, we have
(4.4) [yn = 2| < (1 = Bn + Bub)[[n — 27[| + [|vn]-
Combining [4.8) —{(4]4), we obtain
(4.5) [nt1 = 2% < [1 = an(1 = 0(1 = Bn + Bub))][| 2 — 27|

+ an([lupll + Ollonll) + (]l + llwnll).

Sinced < 1,0 < B, < 1(n > 0),we havel—3,+3,0 < 1andl—60(1—/3,+5,0) > 1—-6 > 0.
Therefore,[(4.5) implies

(4.6) [enia — 2% < [1 = an(l = O)][lzn — 7]
]‘ !/ "
+an(l = 0) - T (l[un ]| + Olvall) + (]| + llwnl))-

Sinced" ", a,, = oo, it follows from Lemmg 4.1l and (4.6) thit,, — z*|| — 0(n — o), i.e.,
{x,} converges strongly to the unique solutiehof the problem[(1.6).
Now we prove the second conclusion. By {4.2), we know

(4.7) [zn1 = 2™ < (1= o)z + anftn — p(tn)
+ Tt gty P(En) = p(N(S(t), T(tn), U(tn)) = £)))

+ Qg +w, — || + En.
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As the proof of inequality{ (4]6), we have

(4.8) [[(1 = an)zn + aultn — p(tn)
+ 0t gty P(tn) = PN (S(tn), T(tn), U(tn)) — [))) + cntin + wy — 27|
<[ —an(l=0)]|lz, — 27|

1 / "
+an(1=0) - — ([l + Ollvall) + (l[ug ]l + llwnl])-

1-0
Sincel < a < a,, it follows from (4.7) and[(48) that
|Zn41 — 27|
* 1 / "
< [ =l = O)]llzn — 27| + an(l = 0) - T ([l + Oljval]) + (huzll + llwnll) + €n
£

< o . X . L / -n " )
<[ -anl =)z — 2™ + an(l = 0) - 37— (Ilunll +0llvall + a) + (lunll + llwnll)

Suppose thadime,, = 0. Then from}_>" | ,, = co and Lemma 4]1, we haven z, = a*.
Conversely, iflim z, = x*, then we get

En = Hzn+1 - {(1 - an)zn + Oén[tn - p(tn)
T8yt (Pl) = PN(S (1), T(10), U (ta) = D)) + st + i}
< lznsr — 2™ + [(1 = an)zn + antn — p(tn)
+ J]’\}(~7g(tn))(p(tn) — p(N(S(tn), T(ts), U(tn)) = [))) + antin + wy — z°
< 2ot =2 +[1 = an(l = )] 20 — 27
+ an([lupll + Ollonll) + (1]l + llwnll) = 0 (n — o0).
This completes the proof. O

Remark 4.3.If u,, = v, =w, =0(n >0)Iin Algorithm, then the conclusions of Theorem
[4.2 also hold. The results of Theorems|3.2 4.2 improve and generalize the corresponding
results of [3| 6, 11, 12].
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