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ABSTRACT. Sufficient conditions are established for the ultimate boundedness of solutions of
certain third-order nonlinear differential equations. Our result improves on Tunc’s [C. Tunc,
Boundedness of solutions of a third-order nonlinear differential equation, J. Inequal. Pure and
Appl. Math., 6(1) Art. 3,2005,1-6].
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1. INTRODUCTION
We consider the third-order nonlinear ordinary differential equation,
(1.1) T+ f(z,2,2)% + g(x, %) + h(z, T,%) = p(t, z, T, )
or its equivalent system
(12) i=y, y=2 zi=—f(r,y,2)z—g(x,y)—h(r,y 2)+ptzy,2),

wheref, g, h andp are continuous in their respective arguments, and the dots denote differenti-
ation with respect to. The derivatives

of(x,y,z of (x,y, z Oh(x,y, z
% = fx(aj? y7 Z)? % = fz<$7 y? Z)? % = hw(l'? y? Z)?
oh(z,y,2) _ Oh(x,y,2) _ dg(z,y) _

ay - hy(x7ya 2)7 8z - hz(x>ya Z) and ax - gx(xa y)

exist and are continuous. Moreover, the existence and the uniqueness of solutjonss of (1.1) will
be assumed. It is well known that the ultimate boundedness is a very important problem in
the theory and applications of differential equations, and an effective method for studying the
ultimate boundedness of nonlinear differential equations is still the Lyapunov’s direct method

(seell1] —18]).
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Recently, Tuncl[7] discussed the ultimate boundedness results ¢f Eq. (1.1) and the following
result was proved.

Theorem A (Tunc [7]). Further to the assumptions on the functiohg, » and p assume the
following conditions are satisfie, b, ¢, [, m and A— some positive constants):

() f(z,y,2) > aandab—c > 0forall x,y, z;
(i) 222 > pforall 2,y # 0;
iy =29 > for all 2 # 0;

(V) 0 < ha(z,y,0) < ¢, forall z,y;
(V) hy(z,y,0) > 0forall z,y;
(Vi) h,(z,y,0) > mforall z,y;
i) yfe(z,y,2) <0,yf.(x,y,2z) > 0andg,(z,y) < 0forall z,y, z;
(vii) yzhy(z,y,0) + ayzh,(x,y,z) > 0 for all z,y, ;
(iX) |p(t,z,y,2)| <e(t)forallt >0,x,y,z,
where [} e(s)ds < A < 0.

Then, given any finite numbers, 1, zo there is a finite constan® = D(xg, yo, 20) Such that
the unique solutioriz(¢), y(¢), z(¢)) of (1.2) which is determined by the initial conditions

z(0) = o, y(0) = vo, z(0) = 2o
satisfies
z@)| <D, |yl <D, |2()|<D
forall t > 0.

Theoretically, this is a very interesting result since](1.1) is a rather general third-order non-
linear differential equation. For example, many third order differential equations which have
been discussed in|[5] are special cases of[Eq] (1.1), and some known results can be obtained by
using this theorem. However, it is not easy to apply Thedrém A to these special cases to obtain
new or better results since Theorém A has some hypotheses which are not necessary for the
stability of many nonlinear equations. The Lyapunov function used in the proof of Thédrem A
is not complete (seé&]2]). Furthermore, the boundedness result consideréed in [7] is of the type
in which the bounding constant depends on the solution in question.
Our aim in this paper is to further study the boundedness of solutions df Efy. (1.1). In the next
section, we establish a criterion for the ultimate boundedness of solutions df Eg. (1.1), which
extends and improves Theorém A.
Our main result is the following theorem.
Theorem 1.1. Further to the basic assumptions on the functighg, h and p assume that the
following conditions are satisfied.(b, c, v and A— some positive constants):

() f(z,y,2) >aandab—c > 0forall x,y, z;

(i) 422 > pforall 2,y # 0;

iy "2 >y for all = # 0;

(iv) hy(x,0,0) <ec, hy(z,y,0) > 0andh,(x,0,z) > 0forall z,y, z;

V) yfe(z,y,2) <0,yf.(z,y,2) > 0andg,(z,y) < 0forall z,y, z;

(i) |p(t,z,y,2)] <A <ooforall ¢t > 0.

Then every solution(t) of (1.1) satisfies
(1.3) e <D, i) <D,  [i)| <D

for all sufficiently larget, whereD is a constant depending only anb, ¢, A andwv.
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2. PRELIMINARIES

It is convenient here to consider, in place of the equafior] (1.1), the syfstgm (1.2). It is to be
shown then, in order to prove the theorem, that, under the conditions stated in the theorem,

every solution(z(t), y(t), z(t)) of (1.2) satisfies
(2.1) =) <D, )| <D, [:()[<D

for all sufficiently largef, whereD is the constant irf (1} 3).
Our proof of [2.1) rests entirely on two properties (stated in the lemma below) of the function
V =V(z,y, z) defined by

(2.2) V=Vi+ Vs,
whereV;, V5 are given by

(2.3a) 217 =2 /0 " h(€.0,0)de +2 /0 " (e, 0)dn + 26 /0 " g(wam)dn

+ 822 + 2yz + 26yh(x,0,0) — afy?,

Y

(2.3b) 2V, = affbz® + 2a/ h(£,0,0)dE + Qa/ nf(x,n,0)dn
0 0
Yy
+ 2/ g(x,n)dn + 2* + 2aafry + 2aprz + 2ayz + 2yh(x,0,0),
0

Whereé <0< 27 anda, $ are some positive constants such that

ab—c .l'aé—l' v(ad — 1)
’ [* (52 - bﬂ "ol abd  Bf(e,y,2) - aP?

a < min

and will be fixed to advantage later.

Lemma 2.1. Subject to the conditions of Theorem|1V1(0,0,0) = 0 and there is a positive
constantD; depending only on, b, ¢, « and¢ such that

(2.4) V(z,y,2) = Di(z® +y* + 27)
for all z,y, 2. Furthermore, there are finite constani3, > 0, D3 > 0 dependent only on
a,b,c, A, v, 6, anda such that for any solutiofiz(¢), y(¢), z(¢)) of (1.2),

. d
provided thatr? + % + 22 > Ds.

Proof of Lemm@ Z]1To verify (2.4) observe first that the expressions|(2.3) defirivig 2V
may be rewritten in the forms

) 2
2V, = {2/ h(£,0,0)d¢ — %}ﬁ(;c,o,())} +5b {y—i— M}
0

Yy
+ {2/ nf(x,n,0)dn — o0~ 'y? — aﬁy2} +0(z + 67 1y)?
0

+6 {Q/Oyg(a:,n)dn - by2}
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and
2Vo = af(b — af)x® +a {2 /x h(&,0,0)dé — B~ h*(x, 0, 0)}
0
2 Yy
3y + B a2 h(x,0,0 2 dn — Ba~ly?
+6{a y+ 08 a?h(z,0, )} +{ /Og(x,n)n Ba y}
+a{2/ynf(w7n,0)dn—ay2} + (afx + ay + 2)*.
0

The term2 [" h(€,0,0)d¢ — 2h?(x,0,0) in the rearrangement fa@l; is evidently equal to

v § §
2/0 {1—ghg(é,o,o)}h(g,O,O)df—ghQ(O,O,O).

By conditions (iii) and (iv) of Theorern 1.1 arid0, 0, 0) = 0, we have

v ) ) )
2/0 {1 - Ehg(ﬁ,o, 0)} h(¢,0,0)dE — 5h2(0,0,0) > (1 — EC> v,

In the same way, using (iii) and (iv), it can be shown that the term

{2/; h(&,0,0)d¢ — 3~ h*(x, 0, 0)}

appearing in the rearrangement #f, satisfies

{2/: h(€,0,0)d¢ — B h3(x, 0,0)} > (1 - %) va?,
for all z.

Sinceltry:2) “’Z >v (x#0),
with (2.2), we have

2‘/2{V(l—%@)+aﬂ(b—aﬁ)+au<1—%>}x2
+{(a—%—aﬁ)+(b—g)}y2+5(z+%y)2+(aﬁx+ay+z)2

for all =,y andz. Hence if we choosg = ab the constant$ — éc b—apf,1 ,a— 5 —af

andb — ﬁ are either zero or positive. This implies that there exists a conﬁlﬁemall enough
such that[(z]4) holds.

To deal with the other half of the lemma, let(t), y(t), 2(¢)) be any solution of{ (1]2) and
consider the function

Y > b, (y+0)andf(z,y,z) > a, and combining all these
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By an elementary calculation usirjg (1.2), (2.2) gnd|(2.3), we have that

(2.6) V= (1+d)y / " gelemdn + (1+ a)y / ", 0)dn

{f(xv%z) ; f(xay70)}yz2 . (1 + CL) {h(x,y,z) ; h(ZE,O, O)}yQ
sy D) 0.0} 5 ) b gw)
z €T Y

—(1+a)

- aMy2 + 6hy(2,0,0)y* + he(z,0,0)y* + aaBy?
y

y
—ap{f(z,y,2) —a}rz +{aBr + (1 +a)y + (1 +0)z}p(t, z,y, 2).

—8f(z,y,2)2* — [f(2,y,2) —alz® + 2% — aﬁ{M —b} Ty

By (v), we get
Yy Yy
y/ Ga(2,m)dn <0, y/ Je(2,m,0)ndn < 0.
0 0

It follows from (v), for z # 0 that

{f(:c,y, Z) — f(x7y70)}

z

Wl =a y2’2 = afz(may7912)yz2 > 07

0 <6, <1butW; =0whenz = 0. Hence
Wiy >0 for all z,y,z.

Similarly, it is clear that

h —h
W2 — { ($7y, Z) (x7070)}y2 — hy(l',92y,0)y2 2 O,

Yy

0 <6, <1butWy, =0wheny = 0. Hence
Wy >0 for all x,y.

Also,

h —h
W‘g,: { (I‘,y’Z> . (m7070>}22:h2($,0,932)2220,

0 <63 <1butlWs; =0whenz = 0. Hence

W3 >0 for all z, 2.
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Then, combining the estimatég,, 175, W3 and (iii) with (2.6) we obtain
V < —afvz? — (ab—c — afa)y® — (b—dc)y® — (ad — 1)2*

—az? —aﬁ{@ —b} xy —af{f(z,y,z) —alzrz

+{afr+ (1 +a)y+ (1+95)z}tp(t,z,y,2)

ot ! <g(rvy,y) B b>2] }yz

—(b—dc)y* — {ad — 1 —afv'[f(z,y,2) — a]’} 2* — a2

Y { {x 4ot (@ - b) yr + [z + 207 (f (@, y,2) - ‘Mz}

1
= —§aﬁyaj2 — {ab —c—af

4
+{aBz+ (1 +a)y+ (1 +8)z}pt, z,y,2).
If we choose

ab—c _l'aé—l' v(ad — 1)
ﬁ[a—l—y—l (g(ﬂc,y) —b)Q])a’ abd ’ﬂ[f($7y7z)_a]2 )

Y

a < min

it follows that
. 1
V< —Eozﬁch — (b—6c)y* — az® + {aBr + (1 +a)y + (1 +6)z}p(t, z,v, 2)
< —Dy(a® +y* 4+ 2%) + Ds(|z| + [y| + 12]),

where

D4:min{%aﬂl/;b—5c;a}, D5 = Amax{af;1+a;1+0}.
Moreover,
(2.7 V < —Dy(x? + 92 + 22) + Dg(2® + y* + ZQ)%,

whereDg = 3%D5.
If we choose(z? + y? + 22)2 > D; = 2DgDy !, inequality ) implies that

. 1
V< —51)4(3:2 + 1y + 2%).
We see at once that '
V S _D87
provided thatr? + 42 + 22 > 2DgD;'; and this completes the verification pf (2.5). O

3. PROOF OF THEOREM [1.]
Let ((¢),y(t), z(t)) be any solution of (1]2). Then there is evidentlga> 0 such that
2% (to) + y2(to) + 22(to) < Ds,
whereD; is the constant in the lemma; for otherwise, that is if
22(t) + y*(t) + 22(t) > D3, t>0,
then, by [(2.5),

V(t) < —D2 < 0, t> 0,
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and this in turn implies thal’'(t) — —oo ast — oo, which contradicts[(2]4). Hence to prove
(1.3) it will suffice to show that if

(3.1) 22 (t) +y2(t) + 22(t) < Dy for t=T,

whereDy > Dj is a finite constant, then there is a constayqt > 0, depending o, b, ¢, §, «
and Dy, such that

(3.2) 22 () + 2 (t) + 22(t) < Dyy for t>T.

Our proof of [3.2) is based essentially on an extension of an argument in the proof of [8,
Lemma 1]. For any given constait> 0 let S(d) denote the surface:? + 32+ 2% = d. Because
V' is continuous inc, y, z and tends teroo asx? + y? + 22 — oo, there is evidently a constant
Dy; > 0, depending oDy as well as o, b, ¢, 6 anda, such that

3.3 min Vir,y,z) > max V(x,y,2).
( ) (mvyvz)ES(Dll) ( y ) (xvy7z)€S(D9) ( y )
It is easy to see fron (3.1) and (B.3) that

(3.4) () + 3 (t) + 22(t) < Dy for t>T.

For suppose on the contrary that there issa7” such that
ZL’2(t> + y2(t) + ZQ(t) > DH.

Then, by [(3.1L) and by the continuity of the quantiti€s), y(¢), z(¢) in the argument displayed,
there exist, t,, T < t; < ty such that

(3.5a) *(t1) + y*(t1) + 2*(ta) = Dy,

(3.5b) 2*(t2) + y*(t2) + 2%(t2) = Dny
and such that
(3.6) Dy < 2%(t) + y*(t) + 2%(t) < Dy1, t <t <ty

But, writing V' (¢) = V (z(t),y(t), 2(t)), sinceDy > Dj, (3.6) obviously implies [in view of
@3)] that
V(tg) < V(tl)

and this contradicts the conclusion [from (3.3) and](3.5)]:
V(tg) > V(tl).
Hence[(3.4) holds. This completes the proof/of|(1.3), and the theorem now follows.

Remark 3.1. Clearly, our theorem is an improvement and extension of Thepriem A. In partic-
ular, from our theorem we see that (viii) assumed in Theqrém A is not necessary, and (iv) and
(ix) can be replaced by, (z,0,0) < c and (vi) of Theoren 1|1 respectively, for the ultimate
boundedness of the solutions of Hg. {1.1).

Remark 3.2. Clearly, unlike in [7], the bounding constaftin Theorenj 1./l does not depend
on the solution of{ (1]1).
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