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Turan’s inequalityg-polygamma functions;-zeta function.

In this paper, we give new Turan-type inequalities for sgaspecial functions,
using ag- analogue of a generalization of the Schwarz inequality.
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1. Introduction
In [9], P. Turéan proved that the Legendre polynomiBl$x) satisfy the inequality
(1.1) P2 (x) = P(2)Py2(x) >0, x€[-1,1, n=0,12,...

and equality occurs only if = +1.

This inequality been the subject of much attention and several authors have pro-

vided new proofs, generalizations, extensions and refinemenisipf (
In [7], A. Laforgia and P. Natalini established some new Turan-type inequalities
for polygamma and Riemann zeta functions:

Theorem 1.1.For n = 1,2,... we denote by),(x) = ™ (x) the polygamma
functions defined as the— th derivative of the psi function

_ ()
 D(2)’
with the usual notation for the gamma function. Then

Yo (@) (&) > Vg (1),

x>0

()

where™ ™ is an integer

Theorem 1.2. We denote by(s) the Riemann zeta function. Then
() o Cls+)

C(s+1) — ((s+2)

The main aim of this paper is to give some new Turan-type inequalities for the
g-polygamma and-zeta R] functions by using a-analogue of the generalization
of the Schwarz inequality.

(1.2) (s+1) Vs > 1.
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To make the paper more self contained we begin by giving some usual notions
and notations used iprtheory. Throughout this paper we will fix]0, 1| and adapt
the notations of the Gasper-Rahman bogk [

Let a be a complex number, theshifted factorial are defined by:

(1.3) (a;9)o = 1; (a;q)n = ﬁ(l — aq") n=12,...
k=0
(1.4) (@:q)oo = lim (a;q)n = ﬁ(l —aq").
k=0

For x complex we denote
(1.5) ], = 11__qq .
Theg-Jackson integrals froito a and from0 to oo are defined by4, 5]:
(L.6) [ st =1~ 9y slaay

n=0
and
(L.7) | s@da=a-0 S f@)
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It satisfies the functional equation:
(1.9) Lz +1) = [z]Ty(z), Ty(1) =1

and tends td'(z) wheng tends to 1.
Moreover, it has the-integral representation (seg [3])

where

RN (T

K, () = 1-9  (0-9dx(=01-9" 9
Tl (1= (1= 9 Deo(—(1 = )T @)
Lemma 1.3.Leta € R, U{oc} and letf andg be two nonnegative functions. Then

(1.10) ( NGl <x>dqx)2 < ( / ag(x)fW(x)dqw) ( / ag(:c)f"(w)dqw) ,

wherem andn belong to a seb' of real numbers, such that the integrais10) exist.

and

Proof. Lettinga > 0, by definition of theg-Jackson integral, we have

(1.11) /Oag(w)fm;n (2)dgr = (1—q)ay_ gla?) f**" (aq”) "

p=0

= lim (1—q)a ) glag")f

N——+o0
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By the use of the Schwarz inequality for finite sums, we obtain

N 2
(1.12) (Z glag’) 5" <aqp>qp>
p=0

< (Z g(aqp)fm(aqp)qp) <Z g(aqp)f"(aqp)qp> :

The result follows from the relatiori(11) and (L.12).

To obtain the inequality fon = oo, it suffices to write the inequalityl(10) for
a = ¢V, then tendV to co. O
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2. The g-Polygamma Functions

Theg-analogue of the psi function(x) = FF/((;”)) is defined as the logarithmic deriva-
tive of theg-gamma functiony, (z) = ?Z(g

From (1.8), we get forz > 0

—+x

oo qn
Yy(r) = —Log(l — q) + Long T_gie
n=0

0 qna:
= —Log(1 —q) + Lo )
g(1—q) gq; i
The last equality implies that
Lqu q txfl
(2.1) vile) = ~Log(1 )+ 122 [ T —dp
—qJy 11t

Theorem 2.1.Forn = 1,2,..., puty,, = é") then-th derivative of the function
1g. Then

(2.2) Yo @) am(®) 2 V2 o (2),

q7
where™ is an integer.

Proof. Let m andn be two integers of the same patrity.
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0

Vanl®) = 37— 1t

d,t.
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tm—l

Applying Lemmal.3with g(t) = 5, f(t) = (— Logt) anda = ¢, we obtain

q t:cfl q txfl
(2.3) / (— Log t)"dqt/ (—Logt)™d,t

q tmil m+n 2
> {/ (—Logt) 2 d,t| ,
, 1t
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3. The ¢- Zeta function

Forz > 0, we put

a(z) = 2o8®) _ g (Log(x))

~ Log(q) Log(q)
and al,
{r}e = go+alals)
Log(x) 0
whereFE (Loi > is the integer part o%

In[2], the authors defined thgZeta function as follows

(3.1) o) =3 {n} Z !

They proved that it is g-analogue of the classical Riemann Zeta function and we
have for alls € C such thati(s) > 1,

G(s) = = ! /OOO ts_lzq<t>dqt7

where for allt > 0,

t) = ;eq{”}qt and T,(t) = [1;‘11((?)
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Proof. Fors > 1 the functiong-zeta satisfies the following relation
1 o
(3.3) C(s) = = / 517, (t)dt.
Ly(s) Jo

Applying Lemmal.3with ¢(t) = Z,(t), f(t) = ¢t we obtain

(3.4) /0 h 517, () d,t /0 h 7, ()t > { /0 h tSZq(t)dqt} :

Further, using{.3), this inequality becomes

2

(B5) G ()(s + 2T (s +2) = [G (s + 1) |Tyls +1)]
So, by using the relatioh, (s + 1) = ¢~*[s],[',(s), we obtain

(3.6) [s + 1]qu(3)Cq(3 +2) > q[s]q [Cq(s + 1)]2

which completes the proof.
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