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ABSTRACT. This paper deals with certain inequalities concerning some kinds of chordal poly-
gons (Definitiorf 1.R). The main part of the article concerns the inequality

n
Z cos 3; > 2k,
j=1
where

Zﬁj (n—2k)Z 5 n—2k>0,  0<p;< j=1n.

™
2 )
This inequallty is considered and proved fin [5, Theorem 1, pp.143-145]. Here we have ob-
tained some new results. Among others we found some chordal polygons with the property that
S, cos? B; = 2k, wheren = 4k (Theore). Also it could be mentioned that Theorem
[m is a modest generalization of the Pythagorean theorem.

Key words and phrasednequality, k-chordal polygonk-inscribed chordal polygon, index éfinscribed chordal polygon,
characteristic ok-chordal polygon.
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1. INTRODUCTION

To begin, we will quote some results givenin [5], [6].

A polygon with verticesA4,, ..., A, (in this order) will be denoted byl = A, --- A,, and
the lengths of its sides we will denote by, ... ., a,,. The interior angle at the vertek; will be
signed byo; or <A;. Thus

<Aj - <{Aj_1AjAj+1, j = 1,
whereA, = A,, andA,, .1 = A;.
A polygon A is called a chordal polygon if there exists a cirkleuch thatd; € K, j =1,n
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2 MIRKO RADIC

Remark 1.1. We shall assume that the considered chordal polygon has the property that no two
of its consecutive vertices are the same.

For A chordal, byC andr we denote its centre and the radius of its circumcitle2spec-
tively.
A very important role will be played by the angles
(1.1) B; = <CA; A4,
(12) w; = <IAjCAj+1, j = 1,_71
We shall use oriented angles, as it is known, an aadgté) R is positively or negatively oriented

if itis going from @ P to Q R counter-clockwise or clockwise. It is very important to emphasize
that the angleg;, ¢, have opposite orientations, see e.g. 1.1. Of course, the measure of

A

Figure 1.1:

an oriented angle will be taken with or — depending on whether the angle is positively or
negatively oriented. The measure of an angle will usually be expressed by radians.

Remark 1.2. For the sake of simplicity, we shall also write the measures of the oriented angles
in (I.1) and[(1.R) ag;, ;. Obviously, for allg;, ¢, the following is valid

T
0§|ﬁj|<§v 0<|90j|§777
since no two consecutive vertices4n - - - A, are the same, compare RemjarK 1.1.

Remark 1.3. In the sequel, unless specified otherwise, we shall suppose thiatno, i.e.
0<Igl<3 i=Tm

Accordingly, in the sequel when we refer to chordal polygons, it will be meant (by Remark
[1.7 and Remark 1].2) that the polygon has no two consecutive overlapping vertices and no one
of its sides is its diameter.

Definition 1.1. Let A be a chordal polygon. We say thdtis of thefirst kind if inside of .A
there is a poinO such that all oriented angles4;0A,, 1, j = 1,n have the same orientation.
If such a pointD does not exist, we say thatis of thesecond kind
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Definition 1.2. Let A be a chordal polygon and lét € Int(.A), such that
b1 + -+ Y| = 2k,

where; = measure of the oriented angted,0A;; andk is a positive integer. Ther is
called ak-inscribedchordal polygoror, for brevity, k—inscribed polygon ifO is such a point
thatk is maximal, i.e. no other interior poit exists such that < m and at the same time the
following is valid

1 + -+ Y| = 2ma,
where nowy); = measure of the oriented angled; PA; ;.

Figure 1.2:

For example, the heptagoty - - - A; drawn in Fig.[ 1.2 i2-inscribed chordal, sinck); +
-+ + 17| = 4x. This heptagon is, according to Definitipn|1.1, of the first kind — all angles
have the same, negative orientation.

Of course, a-inscribed polygon is of the second kind if not all angleshave the same
orientation.

Definition 1.3. Let .4 be ak-inscribed chordah-gon and let
lo1 + -+ -+ @n| = 2mm, m e {0,1,2,...,k}
andy; is given by [1.2). Them: is theindexof A, denoted as Ind4).

For example, the heptagon on Hig.|1.2 has index equal to 1, [ginee- - - + 7| = 27. (See
Figure[ 1.3. Let us remark that, is positively and all other angles are negatively oriented.)

Definition 1.4. A k-inscribed polygonA will be called ak-chordal polygon if it is of the first
kind andInd(A) = k.

Theorem A. Let A be ak-chordal polygon and le; be given by[(1]1). Then we have
B+ Bl = (0 — 28) .

Proof. Since everyk-chordal polygon is of the first kind (Definitian 1.4), then eithgr >
0, j=1,norp; <0, j=1,n. If 8; >0, thenp,; < 0 and the following holds

o1+ + o = —2km.
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Figure 1.3:

In this case, becaus®; + |p;| = 7 or p; = 23; — 7, the above equality can be written as

n

Z(Zﬁj —7) = —2km,

J=1

or equivalently
“ >
Y Bi=n- 2k)5 -
j=1

If 3; <0, theny; > 0anditholdsy; + - - - + ¢, = 2k7. In this case we have

- T
;:1: By = —(n—2k)7.
O

If A is ak-chordal polygon, then eachy, j = 1,n, is negative ifA is positively oriented
and vice versa. But in the case whdris ak-inscribed polygon of the second kind, then some
of the 3, are negative and some are positive.

Remark 1.4. In the sequel, for the sake of simplicity, we shall assume that the considered
polygon is negatively oriented. Thus, in the case whéniscribed polygonA is negatively
oriented, then

Finally, let us point out that for Ind4) = 0, the following holds

o1+t =0=01+-+ [,
Theorem B. Let.A be ak-inscribed polygon. Then

(L3) Bit o+ ful = [ = 2Am 4 V)5,

where Ind.A) = m andv is number of all negativg;’s.
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Proof. As p; = —m + 23, if 3; > 0andy,; = 7 + 25; if 3; < 0, the equalityp; + --- + ¢, =
—2mm can be written as

26+ -+ 26, +vr — (n —v)m = —2mm,

from which (1.3) follows.
If 3;,,...,0;, are the negative angles [n (L.3), then we have

(1.4) |51|‘|‘"'+|5n|:[n—Q(m+V)]g+27,

wherer = —(8;, +--- + 0;,)- O

The greatest part of this article is in some way connected to the following theorem, see [5,
Theorem 1] as well.

Theorem C. Let A be ak-chordal polygon. Then

(1.5) > cosB; > 2k,
j=1
where
Zﬁj n—2k; 0< B < g i =T,n.

Proof. Sincecosmx > 1 — 2z if z € (0,1/2), puttinga = 72 we obtain

2
(1.6) cosa>1—— q, 0<a<

s 2

Thus, we deduce
icosﬁ >n—giﬂ- :n—z(n—Zlc)z = 2k.
= J 7Tj:1 J ™ 2

O

Remark 1.5. After this paper had been written, J. Sdndor informed me that the ineqiality (1.6)
follows from Jordan’s inequality

. 2 T
sinr > — , xE(O,—),
s 2
puttingz = 7/2 — a.
At this point let us remark that we can consult the articles [1], [2], [3], [4] and [8] for further
information and generalizations of certain inequalities concerning plane and space polygons.

2. CERTAIN INEQUALITIES CONCERNING k-CHORDAL POLYGONS

In this section we deal with-chordal polygons. By Remafk 1.4 and Definitjon|1.4, all angles
B; are positive. First of all we give the following remark.

Remark 2.1. By the relation3; ~ 0 we mean thap, is near to zero, but it is positive. Similarly,
B; ~ m/2 denotes the case, whenis close tor/2, but it is less tham /2.

Theorem 2.2.Letk, n be positive integers such that— 2k > 0 and letg,, ..., 3, be angles
such that
T N
2.1 =(n— 2k; —j=1n
(2.1) Zﬁ] (n 0< ;< 5.7
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Then there exists a positive numbesuch that

(2.2) Z cos”" B; = 2k,
j=1
where
log =2k
2.3) | <h < —oBHT
log cos 775

Proof. From (1.5) it follows that there is a positivefor which (2.2) holds as well. Now, we
only need to prove that this satisfies[(2J3). For this purpose we will first prove the following
lemma.

Lemma 2.3. Let h > 1 be fixed. Then the functiom = cos” z is concave in the interval
(0, arctan(1/v/h — 1)).
Proof. As
y" = hcos" %z [(h — 1)sin®z — cos® ],
it follows that
y' <0 if (h—1)tan’z < 1,
y' >0 if (h—1)tan*z > 1.

Thus, the functiorny = cos” z is concave in0, arctan(1/y/h — 1)) and convex in the interval
(arctan(1/y/h — 1),7/2). This proves Lemmia 2.3. O

Now, assume tha@.l) is fulfilled. Then it is easy to see that the s{/m cos" 3; has the
following properties.

(i1) If (n — 2k)5. < arctan(1/vh — 1), then the sund 7, cos™ 3; attains its maximum

for By = --- = B, = (n — 2k) L.

(i) If (n—2k)5 > arctan(1/v/h — 1), then the sun}_"_, cos” j3; attains its minimum for
Br=-= 0= (n—2k)s.

(i3) f B1=---=Bor =0, Bogy1 =--- = B, = 5, then

Z cos” B ~ 2k.
j=1

(i4) For h sufficiently large the following result holds:
h(n — 2k)— < 2k.
ncos"(n )Qn <
(i5) There aréh; > 1, hy > 1 such that
Mn — 2k)—— > 2 by — 2k)—— < 2
ncos" (n k>2n > 2k, ncos™(n k)Qn < 2k,
and the equality: cos™ (n — 2k) £ = 2k is obtained for

log %

24 ho = h(n, k) = .
2.4) 0= hin,k) log cos(n — 2k) -
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Lemma 2.4. Leth(k), k € N be given by

IOg 2k+1

(2.5) h(k) =

4k+2
Then the sumy_"_, cos"*) 3; attains its maximum for

T
4k + 2’

Proof. Firstly let us remark tha;™5 = 7 : (2k + 1) and this practically means that

(2.6) B =" = Popq1 &

T
52k+2:"'zﬁn%§‘

Bokto+ -+ P = (n— (2k + 1));

so, from

(2.7) (2k + 1) cos™() + (n—(2k+ 1)) cos h(k) ;T =92k

m
4k + 2
we get[2.5). To prove Lemnja 2.4 we have to prove the inequality

(e

1
> )
Vh(k) -1 4k + 2

(2.8) arctan

Starting from[(2.5), we can write

T
h(k) — 1 < cot
(k) ikt
ie.
h(k) < 1+ cot? —
4k + 2’
o)
2k
OBmT gz T
log cos 7 4k + 2
implying
| 2k | T 1/ sin? s
>
ok 11 Og(cos4k+2) ’
thus
2k - 1
2k + 1 \/( ) l/sin2 41;;2 ’
4k+2

Letting & — oc in the last relation we get a valid result since the expression on the left-hand
side tends to 1, while the right-hand side tendd tq/e. This finishes the proof of Lemma
2.4. O

Finally we have to show that

(2k 4 1) cos"™®

T
2%k
4k + 2 > &

(2k + 1) cos"™® > (2k + 2) cos"®

T
4k + 2 2k + 2’
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where one can writek = 2kcos"™ 0, %5 = (5 + %) : (2k 4 2). For this purpose it is

sufficient to check that the above relations hold, e.gkfer 1, 2, 3. Thus, we have
3 cosh(V) % — 2.000000001,

5c0s"® T 4
COS 10 ,

7 cos"® 1”—4 — 6.00000006,

4cos® % — 1.50585114 < 3 cos"V %,

6 cos"®) = = 3164961846 < 5 cos"®

8 cos®) g = 4.947027176 < T cos™?) %

Let us remark that”5 ~ %#ﬁ for sufficiently largek. This completes the proof of the
Theorem Z.P. O

As an interesting illustrative example we provide the following table.

k| nk)  Jarctanl/(/R(k)-1] 25
1 [[2.818841678  36.55639173" 30°
2 | 4.446703708  28.30865018" 18°
3 | 6.070896923  23.94487335° 12.85714286°
4 | 7.693796543  21.13214916° 10°
5 |9.316082999  19.12497372° 8.18181812°
10 || 17.42431500  13.86082784° 4.28571428°
100| 163.3293834|  04.48781187° 0.44776119°

Table 1.

Example 2.1. We give an illustrative example with respect/t2). The functiony = cos"?

is shown in Fig. forr € [0,%]. The pointzy = arctan1/,/h(2) — 1 = 28.30865018 is
its inflection point. Fom = 11, under the constrain.l), the suﬁjjli1 cos"® 3; takes its

maximum for

y

Figure 2.1:
T
br=-=p=1 o=

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004
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Here we point out thag = cos™?® z is concave in0, z,) and

5 cos?) s > Z cos"® xj,

10~ &
holds true for every,, ..., x5 suchthate; +---+ a5 =%, 0<ua; <%, j=1,5.
Also,
2w
5c0s™® = < 6eos"® X — 316496184
Cos 10> CoS 2 64961846 >
3
> 7 cog"® 1—1 — 2.343170592 >
4
> 8 cos"® % — 1.713146048 >
> 11 cos"® L — 0.714031536,
holds, where
2 T T s
E:<§+§>:67 572"'2511%57
3 T T 7 ™
n=(Gr3+3)ih Am=sung
etc.

These relations can be clearly explained by the convexitydf® 2 on (x, 7) and byz, <
2 3 T
) < i < < 99 -

Now, we shall state and prove some corollaries of Thegrefn 2.2.
Corollary 2.5. One hasi(k) — oo whenk — oo.

Proof. It can be found that

i (log 537) %+l o w
d% (log cos #ﬁ) 4 4k + 2
0
For exampleh(500) = 811.78, h(10%) = 1622.38, h(10%) = 16233.22, etc.
Corollary 2.6. h(k) is the same for ath > 2k.
Proof. This is a consequence ¢f (2.7). O

Corollary 2.7. Letk be a fixed positive integer aridn, k) be given by[(2]4). Theln(n, k) — 1
whenn — oo.

Proof. It can be easily seen that

i (log2)  nkr
T (logam b0 o BT
< (log sin £) T n
Now, obvious transformations give the assertion. O

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004 http://jipam.vu.edu.au/
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For example, we have
h(5,1) = 1.72432, h(6,1) = 1.58496, h(7,1) = 1.50035,

h(5,2) = 4.44670, h(6,2) = 2.81884, h(7,2) = 2.27279.
Corollary 2.8. Letny, ki, no, ko be any given positive integers, such that> 2k;, j = 1,2.
If
29 b _f
nq N9

thenh(nl, ]{51) = h(ng, k’Q)
Proof. Suppose thaf (2.9) holds. Then we can write

]{3171' ]{3271' T T
—_— = = —2k))— = — 2ky)—.
ny %) (nl 1> 2711 (n2 2) 2712
From this we easily deduce the assertion. !

Corollary 2.9. Letk € N be fixed. Theh(n, k) < h(k) for any integem > 2k. The equality
h(n, k) = h(k) holds forn = 2k + 1.

Proof. This follows from the Corollary 2|5 and Corollafy 2.7. The asserted inequality is the
straightforward consequence pf (2.4) and](2.5). O

As an example we give the following numerical results (see Table 1 and the previous exam-
ple):
h(5,1) = 1.72432 < h(1) = 2.81884
h(5,2) = 4.44670 = h(2) = 4.44670 (since5=2-2+1)
h(6,2) = 2.81884 < h(2).

Theorem 2.10.Let A be a giverk-chordaln-gon and letuy, . . ., a,, be the lengths of its sides.
Then

(2.10)

1/h(k)
2k - 2k ’

wherer denotes the radius of the circumcircle df
Proof. From (2.2) and[(2]3) it follows that

(2.11) D cos"™® B < 2k <) " cos ;.

j=1 Jj=1
Sincea; = 2rcosB;, j = I,n, the above inequalities can be written as[in (2.10). Thus,
Theorenj 2.70 is proved. O
Corollary 2.11. The following equality holds:
(2.12) a™® 4 @ ® = 9k (2r)m®),

wherel < m(k) < h(k).

Corollary 2.12. Letay,...,a, be given lengths. Then there exist&-&hordal n-gon with
radiusr whose sides have given lengths, if there isdi) satisfying|(2.1R). (In this connection
Examplg 2.6 may be interesting.)

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004 http://jipam.vu.edu.au/
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Corollary 2.13. Leta; = --- = a, = a. Then
a [ n\L/hnk)
(2.13) r=3 (%> .
Proof. The relation|[(2.13) follows fronj (2/2) if; = - - - = (3,.. 0O

Corollary 2.14. The following equality holds:

- ok 1/h(n,k)
sin—:( ) .

n n

Proof. As a = 2r cos(n — 2k) £ = 2rsin &=, we haven/(2r) = sin 7. From [2.1) it follows
that
a ok 1/h(n,k)
()™
0

Example 2.2. Let 5, = 20°, B, = 30°, B33 = 40°, r = 5. By the well-known relation
a; = 2r cos 3; we get

a; = 9.396926208, a, = 8.660254038, a3z = 7.660444431.
Fromp3, + (3, + B3 = (3 — 2 1)7, itis clear that = 1. It can be found that
cos™ 31 + cos™ By + cos™ (B3 = 1.999999783 for m = 2.737684,
cos™ B1 + cos™ By + cos™ (B3 = 2.000000061 for m = 2.737683.
Thus, we have the approximative equality
al' +ay' + as' = 2k(2r)",

wherek = 1 andm = 2.737683. We see immediately th&t737683 < h(1) = 2.81884. But it
follows from the fact that); are not equal to each other, . # 7/6. Therefore

cos"™ 20° + cos™™M 30° 4 cos"™ 40° = 1.97761 < 2;
in the case of equal;’'s we have3 cos"™ /6 = 2.

Example 2.3.Let 3; = 10°, 3 = 15°, 33 = 18°, 3, = 229, 35 = 25° r = 4. With the help
of a; = 2r cos 3; we derive

ay = 7.87846202, ay = 7.72740661, as = 7.60845213, a4 = 7.41747084, a5 = 7.25046230.

Frompg, +---+ 35 = (5 — 2 - 2)5 we conclude that = 2. The corresponding pentagon is
shown in Fig[ 2.R. Letus remark that

> measure okiA;C A = 4r.
=1
It can be easily computed that
5
D cos™ By =3.999977021  for  m = 4.2082782

j=1

Z cos™ B, = 4.000022422  for  m = 4.2082781.

Finally the approximate equalltE
wherem < h(2) = 4.446703708.

= 2k(2r)™ holds fork = 2 andm = 4.2082782,

i—=1 ,]

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004 http://jipam.vu.edu.au/
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Figure 2.2:

Example 2.4. There is al-chordal pentagol$ such thab; = |B;B;1| = |4jAj41| = aj, j =
1,5, whereA is the2-chordal pentagon shown in Fig. P.2. It can be found that

5
;arccos 12%9 - = 270.011718" > 270",

= 269.955703° < 270°.

5 aj
E arccos
: 12.89
Jj=1
Thus, the radius of the circumcircle Bfsatisfies the relation

12.89 < 2rp < 12.90

and for the angles df we haves, +--- + 35 = (5 —2-1)7, since, herd: = 1.
Thus, besides the equality in Example|2.3 there is the equality

al' + -+ al = 2k(2rp)",
for k = 1 andm < h(1) = 2.81884.

Example 2.5.Let 8, = 9°, B, = 63°, 33 = 65°, B4 = 66°, 85 = 67°, r = 3. Then there is
1-chordal pentagon such that

al'+-+al'=2-6", 1<m<h(l).

But there is n®-chordal pentago8 = B, - - - B; such that; = |B;B;;1|. Indeed, it is easy
to show this by

al> + - +al* <4(2r)™
for all m > 1, and for allrz > 3 cos 3, when
ar = 5.92613, as = 2.72394, a3 = 2.53571, a, = 2.44042, a5 = 2.34439 .

Finally, we can show that fon = 1 andm = h(2) we have

ai" + -+ ag’ < 4al".

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004 http://jipam.vu.edu.au/
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Definition 2.1. Let .4 be ak-chordaln-gon. Then the number. > 1 for which we obtain

n

Z aj' = 2k(2r)™

j=1
is thecharacteristicof A in the notationChar(.A). Herer is the radius of the circumcircle of
A andCLj = |AjAj+1’, j=1n.

Remark 2.15. By Theorenj 2.2, we have

(2.14) 1 < Char(A) < h(k),
whereh (k) is given by [2.5).
In particular, if3, = --- = 3, = (n — 2k)5-, then

Char(A) = h(n, k),
whereh(n, k) is given by [2.4).

Remark 2.16. Since there are situations when certain angleare close t®), and other angles
are close tor/2, it is clear that instead of constraift (2.6) in the proving procedure of Theorem

[2.2, we can take

™
ﬁl_"'_ﬁQk—H_Zlk—_‘r_Q?

Thus, instead of (2.14) it can be written
1 < Char(A) < h(k),

where ChatA) < h(k) means that Chad) < h(k) and that Chatd) may be close té (k).
For example, letd be al-chordal pentagon such that

s
52k+2:"':5n:§-

90.000002°
B =0y =p5= g By = B5 = 89.999999°.
Then
Char(A) =~ h(1) = 2.818841678,
because

0
(1) 90000002
3
Example 2.6. Let A be 1-chordal quadrilateral such that
m
B+ B3 = 5 = [ + s
ThenChar(A) = 2. This is clear, since

cos? 31 + cos? B3 = 1 = cos? By + cos? 3.

3 cos” + 2 cos"™ 89.999999° = 1.999999962 ~ 2.

Thus
ai + a3 + a3 +aj = 2(2r)%
Of course this property is not true for evenchordal quadrilateral; there are chordal quadri-
laterals wheres, + (35 # 7, compare Fi@’s.

Example 2.7. Let A be a2-chordal octagon such that

™
(2.15) 51+55=52+56=53+57:54+58=5-
As an illustration, see Fig. 3.4
As

cos® B + cos® Bji4 = 1, j=1,23.4,

J. Inequal. Pure and Appl. Mathb(1) Art. 1, 2004 http://jipam.vu.edu.au/
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Figure 2.3:

A,

)

S

A, {< ., B,
C A,

Ay

Figure 2.4:

thenChar(.A) = 2. Thus we clearly deduce By} _, cos® 3; = 4 that

Of course, instead of (2.1L5) we can assume that
Bis + Bia = Ba + Bis = B + Bio = B + B = 5 -
Herei; € {1,2,...,8}.
Theorem 2.17.Let A be ak-chordaln-gon, wheren = 4k, and let
Biy + Biy = =iy + Bi, = g

ThenChar(A) = 2.
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Proof. Sincet = 2k, we have

Z cos? Bi; = 2k,

j=1
and this proves Theorem 2]17. O
Corollary 2.18. We have

Z a? = 2k(2r)2.

Theorem 2.19.Let .4 be a chordal.-gon such that

(2.16) Zﬁ] n—2 B,=0, 0<p;< j=1,n— 1

il
2 )
ThenChar(A) < 2.

Proof. As it will be seen, this theorem is a corollary of Theoren 2.2. First we point out that
(2.18) is obtained by putting = 1, 5, = 0 into (2.1). Also, let us remark that ia (2.1) we can
takef, ~ 0 as well. Therefore the proof of Theor¢m 2.19 is a straightforward consequence of
Theorenj 2.2 where, instead pf (R.6), we write

T s
51:‘“:5%%E, 62k+1:"':ﬂn71%§; Bn =0,

or, becausé = 1, we put
™ ™
61_52’\’17 763_"'_57171’\“57 /Bn_o

For these specified values 6f, . . . , 5, we obtain

Z cos? B =~ cos? 0 + 2 cos? % =2,
j=1

and

Zcosmﬁj %cosm0+2(:osm% <2

whenm > 2. Theorenj 2.19 is thus proved. O
Corollary 2.20. Let the situation be the same as in Theofem|2.19. Then thereisuch that

al' +---+ay = ay 1<m<2.

n?

Proof. The assertion immediately follows fropn’; = 2(2r)™ because,, = 2r. O

s
Corollary 2.21. Under conditions of Theoren 2]19har(A) = 2 only if n = 3.

Proof. Without loss of generality we can take= 5 and consider the pentagon in Fig.|2.5. By
Theore, we haVE’_| cos? 3; < 2. Butif A; — A; andA; — A, then
™ ™
Pr+ Ba — 5 B3, B4 — 5 Bs =0

andZ?zl cos? 3; — 2. O
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Figure 2.5:

Example 2.8. Specify3; = 62°, 8, = 65°, 03 = 68°, 5, = 75°, then

5
ZCOS.?’/2 B; = 1.957416 < 2,

J=1

5
> cos™/? B; = 2.050053 > 2.
j=1
Wheng, = 44.1%, 3, = 46.9°, 35 = 89.4°, 3, = 89.6°, then

5
D " cos® B = 1.9827268 < 2,

J=1

5
D cos'10 3; = 2.0183067 > 2.
j=1

Remark 2.22. As we can see, Theorein 2|19 may be considered as a generalization of the

Pythagorean theorem. For example, all positive solutions of the equation
xi’/2+~~+xi/,21 ::1:?/2

are related to chordal-gons whose characteristicig2.
Thus, the problem "find all positive solutions of the above equation" is in fact the problem
“find all angless,, . . ., 5, such that[(2.1]6) is satisfied under the constraint

Z cos®/? B; =27
j=1

This problem is obvious whem = 3 since thern3; + 3, = 5. But the case. > 3 could be very
difficult.

Theorem 2.23.Let. A be ak-chordaln-gon. Then for every real > 1, we have

- 2K\
(2.17) 5 cos? By >n | — | ,
n
=1

wheres, . .., 3, satisfy [(2.1).

Proof. In [6, Theorem 2] it was proved thdt (2]17) holds for every positive integeHere
we give an abbreviated and simplified proof of this result by which we deduce the assertion of
Theorem Z2.23.
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By the Jordan-type inequality (1.6), i.e. by

2
cos 3; > 1 — =03,
70

using the properties of the arithmetical mean, we can write

p p
- 1 — ] — 2 2k\"
7j=1 7j=1 7j=1
Indeed, here we have

n

2 2 2
2(1—;@) :n—;Zﬁj:n—;(n—Qk)g:W{:.

j=1
This completes the proof of Theor¢m 2.23. O
Corollary 2.24. Under the same assumptions as in Thedrem|2.23, the following holds

4kr\?
a]f+-~+aﬁ>n(—r> :
n

Forp = 1 one obtains an interesting relation:
ay + -+ a, > 4kr.
For example ifo = 7, k = 3, theny_"_, a; > 12r.

3. INEQUALITIES CONCERNING k-INSCRIBED POLYGONS
In this section we start with the equalify (L.4):

(1.4) |51|+---+|ﬁn|:[n—2(m+u)]g+2f

wherer = —(8;, +--- + 3;,) andg;,, ..., 3;, are the negative angles, whiled(.A) = m.
Let A be defined byr = Ar. Then (1.4) becomes

(3.1) Bil+ -+ 18] = [n— 2(m + v = 1) 3.
Using the inequality| (1]6) we can write

n n

D cosBi> Y (1-%@) :n—%Zw = 2(m+v—\).
j=1

Jj=1 J=1

So, by [3.1) it follows that
(3.2) Zcos,ﬁj >2(m+v—N).
j=1

In the casdnd(A) = k, v = 0, we get the inequality (115).
It can be easily seen that

(3.3) v—A>0.
Let us remark that

27:221@-].\<2(u-g),

j=1
from which it follows that2r < vr.
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For the sake of brevity, we denote in the sequel
(3.4) w=Ind(A) +v — A
Now, we have the following theorem which is in fact a corollary of Thedrem 2.2.

Theorem 3.1. Let. A be ak-inscribedn-gon and let

- m m
(3.5) ;w =(n—-2w);,  0<|F <3
Then there is & such that
(3.6) Zcosq B = 2w, 1 <q < h(w),

j=1
where
log g2
(3.7) h(w) = L if w is an integer,
log cos .75

but if w is not an integer, that is, whekh= z + u, wherez > 0 is an integer and: is a positive
number such thal < u < 1, then

Ind(A)+v—X
IOg Ind(A)+v—=z

- log cos 57 4z

(3.8) h(w) |
Ind(A)+v—=z)

Proof. If w is an integer then the proof is quite analogous to the proof of Thelorém 2.2.
In the case whew is not an integer, then instead pf (2.6), we have the expressions

um T
61| = -+ = | Bogina(a)4v—2)| = nd(A) 1 v —2)’ |Bo(md(A)4v—2)+1] = - = |Ba| = 3

Let us remark that now the equality fromn (8.5) can be written as

D161 = I~ 2(Ind(A) + v —2)] 5 +

2
since - .
n—2(Ind(A) +v—2z— u)]§ = [n—2(Ind(A) +v — Z)]E + um
Thus, from
_ h(w) um _
2(Ind(A) + v — z) cos Snd(A) £ = 7) 2w

we get|3.8).

Theorenj 3.]L is thus proved. O

Corollary 3.2. Leta; = |A;A;41], i =1,...,n. Then
Z aj' = 2w(2r)™, 1 <m < h(w).
j=1

Example 3.1.In Fig. [3.1 we have drawn atvinscribed pentagon, with » = 3 andg, =
—6°, B, = 56°, B3 = 28°, B, = —58°, 35 = 70°. In this case we have = 1,Ind(A) = 0,v = 2
and
> s > s 64 m
- =90° = = radi | =218"=(=4+2.-—. = di
> B =90 5 radian jzlel 8 <2+ 9 2) radian

j=1
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Figure 3.1:

Thus we can write
> T 64 w T
|l =B-20—4+2-— . —=(5—=2(r—=0.71111111))—.
Sincer = 2, we have

w=v—0.71111111 = 1.28888888, 2w = 2.57777776
A=0.71111111, 2z =0, u = X since A < 1.
Finally, it can be written that

5
D cos™ B; = 2.571645882 < 2w form = 1.85,
j=1

5
D cos™ B; = 2.578128456 > 2w form = 1.84.

j=1
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