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Abstract

This paper deals with certain inequalities concerning some kinds of chordal
polygons (Definition 1.2). The main part of the article concerns the inequality

n∑
j=1

cos βj > 2k,

where
n∑

j=1

βj = (n− 2k)
π

2
, n− 2k > 0, 0 < βj <

π

2
, j = 1, n.

This inequality is considered and proved in [5, Theorem 1, pp.143-145]. Here
we have obtained some new results. Among others we found some chordal
polygons with the property that

∑n
j=1 cos2 βj = 2k, where n = 4k (Theorem

2.14). Also it could be mentioned that Theorem 2.16 is a modest generalization
of the Pythagorean theorem.

2000 Mathematics Subject Classification: Primary: 51E12.
Key words: Inequality, k-chordal polygon, k-inscribed chordal polygon, index of k-

inscribed chordal polygon, characteristic of k-chordal polygon.
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1. Introduction
To begin, we will quote some results given in [5], [6].

A polygon with verticesA1, . . . , An (in this order) will be denoted byA ≡
A1 · · ·An and the lengths of its sides we will denote bya1, . . . , an. The interior
angle at the vertexAj will be signed byαj or ^Aj. Thus

^Aj = ^Aj−1AjAj+1, j = 1, n,

whereA0 = An andAn+1 = A1.
A polygonA is called a chordal polygon if there exists a circleK such that

Aj ∈ K, j = 1, n.

Remark 1.1. We shall assume that the considered chordal polygon has the
property that no two of its consecutive vertices are the same.

ForA chordal, byC andr we denote its centre and the radius of its circum-
circleK respectively.

A very important role will be played by the angles

βj = ^CAjAj+1,(1.1)

ϕj = ^AjCAj+1, j = 1, n.(1.2)

We shall use oriented angles, as it is known, an angle^PQR is positively or
negatively oriented if it is going fromQP to QR counter-clockwise or clock-
wise. It is very important to emphasize that the anglesβj, ϕj have opposite
orientations, see e.g. Fig.1. Of course, the measure of an oriented angle will be
taken with+ or − depending on whether the angle is positively or negatively
oriented. The measure of an angle will usually be expressed by radians.

http://jipam.vu.edu.au/
mailto:mradic@pefri.hr
http://jipam.vu.edu.au/


Certain Inequalities Concerning
Some Kinds Of Chordal

Polygons)

Mirko Radić
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Figure 1:

Remark 1.2. For the sake of simplicity, we shall also write the measures of
the oriented angles in (1.1) and (1.2) asβj, ϕj. Obviously, for allβj, ϕj the
following is valid

0 ≤ |βj| <
π

2
, 0 < |ϕj| ≤ π,

since no two consecutive vertices inA1 · · ·An are the same, compare Remark
1.1.

Remark 1.3. In the sequel, unless specified otherwise, we shall suppose that no
βj = 0, i.e.

0 < |βj| <
π

2
, j = 1, n.
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Accordingly, in the sequel when we refer to chordal polygons, it will be
meant (by Remark1.1and Remark1.2) that the polygon has no two consecutive
overlapping vertices and no one of its sides is its diameter.

Definition 1.1. LetA be a chordal polygon. We say thatA is of the first kind if
inside ofA there is a pointO such that all oriented angleŝAjOAj+1, j = 1, n
have the same orientation. If such a pointO does not exist, we say thatA is of
the second kind.

Definition 1.2. LetA be a chordal polygon and letO ∈ Int(A), such that

|ψ1 + · · ·+ ψn| = 2kπ,

whereψj = measure of the oriented anglêAjOAj+1 andk is a positive inte-
ger. ThenA is called ak-inscribed chordal polygon or, for brevity,k−inscribed
polygon ifO is such a point thatk is maximal, i.e. no other interior pointP
exists such thatk < m and at the same time the following is valid

|ψ1 + · · ·+ ψn| = 2mπ,

where nowψj = measure of the oriented anglêAjPAj+1.

For example, the heptagonA1 · · ·A7 drawn in Fig.2 is 2-inscribed chordal,
since|ψ1 + · · · + ψ7| = 4π. This heptagon is, according to Definition1.1, of
the first kind – all anglesψj have the same, negative orientation.

Of course, ak-inscribed polygon is of the second kind if not all anglesψj

have the same orientation.
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Figure 2:

Definition 1.3. LetA be ak-inscribed chordaln-gon and let

|ϕ1 + · · ·+ ϕn| = 2mπ, m ∈ {0, 1, 2, . . . , k}

andϕj is given by (1.2). Thenm is the index ofA, denoted as Ind(A).

For example, the heptagon on Fig.2 has index equal to 1, since|ϕ1 + · · ·+
ϕ7| = 2π. (See Figure3. Let us remark thatϕ4 is positively and all other angles
are negatively oriented.)

Definition 1.4. A k-inscribed polygonA will be called ak-chordal polygon if
it is of the first kind andInd(A) = k.
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Theorem A. LetA be ak-chordal polygon and letβj be given by (1.1). Then
we have

|β1 + · · ·+ βn| = (n− 2k)
π

2
.

Proof. Since everyk-chordal polygon is of the first kind (Definition1.4), then
eitherβj > 0, j = 1, n or βj < 0, j = 1, n. If βj > 0, thenϕj < 0 and the
following holds

ϕ1 + · · ·+ ϕn = −2kπ.

In this case, because2βj + |ϕj| = π orϕj = 2βj −π, the above equality can be
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written as
n∑

j=1

(2βj − π) = −2kπ,

or equivalently
n∑

j=1

βj = (n− 2k)
π

2
.

If βj < 0, thenϕj > 0 and it holdsϕ1 + · · ·+ ϕn = 2kπ. In this case we have

n∑
j=1

βj = −(n− 2k)
π

2
.

If A is a k-chordal polygon, then eachβj, j = 1, n, is negative ifA is
positively oriented and vice versa. But in the case whenA is a k-inscribed
polygon of the second kind, then some of theβj are negative and some are
positive.

Remark 1.4. In the sequel, for the sake of simplicity, we shall assume that the
considered polygon is negatively oriented. Thus, in the case when ak-inscribed
polygonA is negatively oriented, then

ϕ1 + · · ·+ ϕn ≤ 0 but β1 + · · ·+ βn ≥ 0.

Finally, let us point out that for Ind(A) = 0, the following holds

ϕ1 + · · ·+ ϕn = 0 = β1 + · · ·+ βn.
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Theorem B. LetA be ak-inscribed polygon. Then

(1.3) |β1 + · · ·+ βn| = [n− 2(m+ ν)]
π

2
,

where Ind(A) = m andν is number of all negativeβj ’s.

Proof. As ϕj = −π + 2βj if βj > 0 andϕj = π + 2βj if βj < 0, the equality
ϕ1 + · · ·+ ϕn = −2mπ can be written as

2β1 + · · ·+ 2βn + νπ − (n− ν)π = −2mπ,

from which (1.3) follows.
If βj1 , . . . , βjν are the negative angles in (1.3), then we have

(1.4) |β1|+ · · ·+ |βn| = [n− 2(m+ ν)]
π

2
+ 2τ,

whereτ = −(βj1 + · · ·+ βjν ).

The greatest part of this article is in some way connected to the following
theorem, see [5, Theorem 1] as well.

Theorem C. LetA be ak-chordal polygon. Then

(1.5)
n∑

j=1

cos βj > 2k,

where
n∑

j=1

βj = (n− 2k)
π

2
, 0 < βj <

π

2
, j = 1, n.
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Proof. Sincecos πx > 1− 2x if x ∈ (0, 1/2), puttingα = πx we obtain

(1.6) cosα > 1− 2

π
α, 0 < α <

π

2
.

Thus, we deduce

n∑
j=1

cos βj > n− 2

π

n∑
j=1

βj = n− 2

π
(n− 2k)

π

2
= 2k.

Remark 1.5. After this paper had been written, J. Sándor informed me that the
inequality (1.6) follows from Jordan’s inequality

sin x >
2

π
x, x ∈

(
0,
π

2

)
,

puttingx = π/2− α.
At this point let us remark that we can consult the articles [1], [ 2], [ 3],

[4] and [8] for further information and generalizations of certain inequalities
concerning plane and space polygons.
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2. Certain Inequalities Concerningk-Chordal
Polygons

In this section we deal withk-chordal polygons. By Remark1.4and Definition
1.4, all anglesβj are positive. First of all we give the following remark.

Remark 2.1. By the relationβj ≈ 0 we mean thatβj is near to zero, but it is
positive. Similarly,βj ≈ π/2 denotes the case, whenβj is close toπ/2, but it is
less thanπ/2.

Theorem 2.1. Let k, n be positive integers such thatn − 2k > 0 and let
β1, . . . , βn be angles such that

(2.1)
n∑

j=1

βj = (n− 2k)
π

2
, 0 < βj <

π

2
, j = 1, n.

Then there exists a positive numberh such that

(2.2)
n∑

j=1

cosh βj = 2k,

where

(2.3) 1 < h <
log 2k

2k+1

log cos π
4k+2

.

Proof. From (1.5) it follows that there is a positiveh for which (2.2) holds as
well. Now, we only need to prove that thish satisfies (2.3). For this purpose we
will first prove the following lemma.

http://jipam.vu.edu.au/
mailto:mradic@pefri.hr
http://jipam.vu.edu.au/


Certain Inequalities Concerning
Some Kinds Of Chordal

Polygons)

Mirko Radić
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Lemma 2.2. Leth ≥ 1 be fixed. Then the functiony = cosh x is concave in the
interval (0, arctan(1/

√
h− 1)).

Proof. As
y′′ = h cosh−2 x [(h− 1) sin2 x− cos2 x],

it follows that

y′′ < 0 if (h− 1) tan2 x < 1,

y′′ > 0 if (h− 1) tan2 x > 1.

Thus, the functiony = cosh x is concave in(0, arctan(1/
√
h− 1)) and convex

in the interval(arctan(1/
√
h− 1), π/2). This proves Lemma2.2.

Now, assume that (2.1) is fulfilled. Then it is easy to see that the sum∑n
j=1 cosh βj has the following properties.

(i1) If (n− 2k) π
2n
< arctan(1/

√
h− 1), then the sum

∑n
j=1 cosh βj attains its

maximum forβ1 = · · · = βn = (n− 2k) π
2n

.

(i2) If (n− 2k) π
2n
> arctan(1/

√
h− 1), then the sum

∑n
j=1 cosh βj attains its

minimum forβ1 = · · · = βn = (n− 2k) π
2n

.

(i3) If β1 = · · · = β2k ≈ 0, β2k+1 = · · · = βn ≈ π
2
, then

n∑
j=1

cosh βj ≈ 2k.

http://jipam.vu.edu.au/
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(i4) Forh sufficiently large the following result holds:

n cosh(n− 2k)
π

2n
< 2k.

(i5) There areh1 ≥ 1, h2 > 1 such that

n cosh1(n− 2k)
π

2n
> 2k, n cosh2(n− 2k)

π

2n
< 2k,

and the equalityn cosh0(n− 2k) π
2n

= 2k is obtained for

(2.4) h0 = h(n, k) =
log 2k

n

log cos(n− 2k) π
2n

.

Lemma 2.3. Leth(k), k ∈ N be given by

(2.5) h(k) =
log 2k

2k+1

log cos π
4k+2

.

Then the sum
∑n

j=1 cosh(k) βj attains its maximum for

(2.6) β1 = · · · = β2k+1 ≈
π

4k + 2
, β2k+2 = · · · = βn ≈

π

2
.

Proof. Firstly let us remark that π
4k+2

= π
2

: (2k+ 1) and this practically means
that

β2k+2 + · · ·+ βn = (n− (2k + 1))
π

2
,

http://jipam.vu.edu.au/
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so, from

(2.7) (2k + 1) cosh(k) π

4k + 2
+ (n− (2k + 1)) cosh(k) π

2
= 2k

we get (2.5). To prove Lemma2.3we have to prove the inequality

(2.8) arctan
1√

h(k)− 1
>

π

4k + 2
.

Starting from (2.6), we can write√
h(k)− 1 < cot

π

4k + 2
,

i.e.
h(k) < 1 + cot2 π

4k + 2
,

so
log 2k

2k+1

log cos π
4k+2

< 1 + cot2 π

4k + 2
,

implying

log
2k

2k + 1
> log

(
cos

π

4k + 2

)1/ sin2 π
4k+2

,

thus
2k

2k + 1
>

1√(
1− sin2 π

4k+2

)−1/ sin2 π
4k+2

.

Letting k → ∞ in the last relation we get a valid result since the expression
on the left-hand side tends to 1, while the right-hand side tends to1/

√
e. This

finishes the proof of Lemma2.3.
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Finally we have to show that

(2k + 1) cosh(k) π

4k + 2
> 2k,

(2k + 1) cosh(k) π

4k + 2
> (2k + 2) cosh(k) π

2k + 2
,

where one can write2k = 2k cosh(k) 0, π
2k+2

= (π
2

+ π
2
) : (2k + 2). For this

purpose it is sufficient to check that the above relations hold, e.g. fork = 1, 2, 3.
Thus, we have

3 cosh(1) π

6
= 2.000000001,

5 cosh(2) π

10
= 4,

7 cosh(3) π

14
= 6.00000006,

4 cosh(1) π

4
= 1.50585114 < 3 cosh(1) π

6
,

6 cosh(2) π

6
= 3.164961846 < 5 cosh(2) π

10
,

8 cosh(3) π

8
= 4.947027176 < 7 cosh(3) π

14
.

Let us remark that π
4k+2

≈ 1
2

π
2k+2

for sufficiently largek. This completes the
proof of the Theorem2.1.

As an interesting illustrative example we provide the following table.
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k h(k) arctan 1/
√
h(k)− 1 π

4k+2

1 2.818841678 36.556391730 300

2 4.446703708 28.308650180 180

3 6.070896923 23.944873350 12.857142860

4 7.693796543 21.132149160 100

5 9.316082999 19.124973720 8.181818120

10 17.42431500 13.860827840 4.285714280

100 163.3293834 04.487811870 0.447761190

Table 1.

Example 2.1.We give an illustrative example with respect toh(2). The function
y = cosh(2) x is shown in Fig.4 for x ∈ [0, π

2
]. The pointx0 = arctan 1/

√
h(2)− 1

= 28.30865018 is its inflection point. Forn = 11, under the constraint (2.1),

O

y

xx0

Figure 4:
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the sum
∑11

j=1 cosh(2) βj takes its maximum for

β1 = · · · = β5 =
π

10
, β6 = · · · = β11 ≈

π

2
.

Here we point out thaty = cosh(2) x is concave in(0, x0) and

5 cosh(2) π

10
≥

5∑
j=1

cosh(2) xj,

holds true for everyx1, . . . , x5 such thatx1 + · · ·+x5 = π
2
, 0 < xj <

π
2
, j =

1, 5.
Also,

5 cosh(2) π

10
> 6 cosh(2) 2π

12
= 3.164961846

> 7 cosh(2) 3π

14
= 2.343170592

> 8 cosh(2) 4π

16
= 1.713146048

................................................

> 11 cosh(2) 7π

22
= 0.714031536,

holds, where

2π

12
=
(π

2
+
π

2

)
: 6, β7 = · · · = β11 ≈

π

2
,
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3π

14
=
(π

2
+
π

2
+
π

2

)
: 7, β8 = · · · = β11 ≈

π

2
,

etc.

These relations can be clearly explained by the convexity ofcosh(2) x on (x0,
π
2
)

and byx0 <
2π
12
< 3π

14
< · · · < 7π

22
.

Now, we shall state and prove some corollaries of Theorem2.1.

Corollary 2.4. One hash(k) →∞ whenk →∞.

Proof. It can be found that

d
dk

(
log 2k

2k+1

)
d
dk

(
log cos π

4k+2

) =
2k + 1

4
cot

π

4k + 2
.

For example,h(500) = 811.78, h(103) = 1622.38, h(104) = 16233.22,
etc.

Corollary 2.5. h(k) is the same for alln > 2k.

Proof. This is a consequence of (2.7).

Corollary 2.6. Let k be a fixed positive integer andh(n, k) be given by (2.4).
Thenh(n, k) → 1 whenn→∞.
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Proof. It can be easily seen that

d
dn

(
log 2k

n

)
d
dn

(
log sin kπ

n

) =
n

kπ
tan

kπ

n
.

Now, obvious transformations give the assertion.

For example, we have

h(5, 1) = 1.72432, h(6, 1) = 1.58496, h(7, 1) = 1.50035,

h(5, 2) = 4.44670, h(6, 2) = 2.81884, h(7, 2) = 2.27279.

Corollary 2.7. Letn1, k1, n2, k2 be any given positive integers, such thatnj >
2kj, j = 1, 2. If

(2.9)
k1

n1

=
k2

n2

,

thenh(n1, k1) = h(n2, k2).

Proof. Suppose that (2.9) holds. Then we can write

k1π

n1

=
k2π

n2

=⇒ (n1 − 2k1)
π

2n1

= (n2 − 2k2)
π

2n2

.

From this we easily deduce the assertion.

Corollary 2.8. Let k ∈ N be fixed. Thenh(n, k) ≤ h(k) for any integer
n > 2k. The equalityh(n, k) = h(k) holds forn = 2k + 1.
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Proof. This follows from the Corollary2.4 and Corollary2.6. The asserted
inequality is the straightforward consequence of (2.4) and (2.5).

As an example we give the following numerical results (see Table 1 and the
previous example):

h(5, 1) = 1.72432 < h(1) = 2.81884

h(5, 2) = 4.44670 = h(2) = 4.44670 (since5 = 2 · 2 + 1)

h(6, 2) = 2.81884 < h(2).

Theorem 2.9. Let A be a givenk-chordal n-gon and leta1, . . . , an be the
lengths of its sides. Then

(2.10)

(
a

h(k)
1 + · · ·+ a

h(k)
n

2k

)1/h(k)

≤ 2r <
a1 + · · ·+ an

2k
,

wherer denotes the radius of the circumcircle ofA.

Proof. From (2.2) and (2.3) it follows that

(2.11)
n∑

j=1

cosh(k) βj < 2k <
n∑

j=1

cos βj.

Sinceaj = 2r cos βj, j = 1, n, the above inequalities can be written as in
(2.10). Thus, Theorem2.9 is proved.
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Corollary 2.10. The following equality holds:

(2.12) a
m(k)
1 + · · ·+ am(k)

n = 2k(2r)m(k),

where1 < m(k) ≤ h(k).

Corollary 2.11. Let a1, . . . , an be given lengths. Then there exists ak-chordal
n-gon with radiusr whose sides have given lengths, if there is anm(k) satisfy-
ing (2.12). (In this connection Example2.6may be interesting.)

Corollary 2.12. Leta1 = · · · = an = a. Then

(2.13) r =
a

2

( n
2k

)1/h(n,k)

.

Proof. The relation (2.13) follows from (2.2) if β1 = · · · = βn.

Corollary 2.13. The following equality holds:

sin
kπ

n
=

(
2k

n

)1/h(n,k)

.

Proof. As a = 2r cos(n − 2k) π
2n

= 2r sin kπ
n

, we havea/(2r) = sin kπ
n

. From
(2.13) it follows that

a

2r
=

(
2k

n

)1/h(n,k)

.
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Example 2.2. Let β1 = 200, β2 = 300, β3 = 400, r = 5. By the well-known
relationaj = 2r cos βj we get

a1 = 9.396926208, a2 = 8.660254038, a3 = 7.660444431.

Fromβ1 + β2 + β3 = (3− 2 · 1)π
2
, it is clear thatk = 1. It can be found that

cosm β1 + cosm β2 + cosm β3 = 1.999999783 for m = 2.737684,

cosm β1 + cosm β2 + cosm β3 = 2.000000061 for m = 2.737683.

Thus, we have the approximative equality

am
1 + am

2 + am
3 = 2k(2r)m,

wherek = 1 andm = 2.737683. We see immediately that2.737683 < h(1) =
2.81884. But it follows from the fact thatβj are not equal to each other, i.e.
βj 6= π/6. Therefore

cosh(1) 200 + cosh(1) 300 + cosh(1) 400 = 1.97761 < 2;

in the case of equalβj ’s we have3 cosh(1) π/6 = 2.

Example 2.3.Letβ1 = 100, β2 = 150, β3 = 180, β4 = 220, β5 = 250, r = 4.
With the help ofaj = 2r cos βj we derive

a1 = 7.87846202, a2 = 7.72740661, a3 = 7.60845213,

a4 = 7.41747084, a5 = 7.25046230.

http://jipam.vu.edu.au/
mailto:mradic@pefri.hr
http://jipam.vu.edu.au/


Certain Inequalities Concerning
Some Kinds Of Chordal

Polygons)

Mirko Radić
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Fromβ1 + · · ·+ β5 = (5− 2 · 2)π
2

we conclude thatk = 2. The corresponding
pentagon is shown in Fig.5. Let us remark that

5∑
j=1

measure of̂ AjCAj+1 = 4π.

It can be easily computed that

C

A
1

A
2

A
3

A
4

A
5

C

Figure 5:

5∑
j=1

cosm βj = 3.999977021 for m = 4.2082782
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5∑
j=1

cosm βj = 4.000022422 for m = 4.2082781.

Finally the approximate equality
∑5

j=1 a
m
j = 2k(2r)m holds fork = 2 and

m = 4.2082782, wherem < h(2) = 4.446703708.

Example 2.4. There is a1-chordal pentagonB such thatbj = |BjBj+1| =
|AjAj+1| = aj, j = 1, 5, whereA is the2-chordal pentagon shown in Fig.5.
It can be found that

5∑
j=1

arccos
aj

12.90
= 270.0117180 > 2700,

5∑
j=1

arccos
aj

12.89
= 269.9557030 < 2700.

Thus, the radius of the circumcircle ofB satisfies the relation

12.89 < 2rB < 12.90

and for the angles ofB we haveβ1 + · · ·+ β5 = (5− 2 · 1)π
2
, since, herek = 1.

Thus, besides the equality in Example2.3there is the equality

am
1 + · · ·+ am

5 = 2k(2rB)
m,

for k = 1 andm < h(1) = 2.81884.
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Example 2.5. Letβ1 = 90, β2 = 630, β3 = 650, β4 = 660, β5 = 670, r = 3.
Then there is1-chordal pentagon such that

am
1 + · · ·+ am

5 = 2 · 6m, 1 < m < h(1).

But there is no2-chordal pentagonB ≡ B1 · · ·B5 such thataj = |BjBj+1|.
Indeed, it is easy to show this by

am
1 + · · ·+ am

5 < 4(2rB)
m

for all m ≥ 1, and for allrB ≥ 3 cos β1 when

a1 = 5.92613, a2 = 2.72394, a3 = 2.53571, a4 = 2.44042, a5 = 2.34439 .

Finally, we can show that form = 1 andm = h(2) we have

am
1 + · · ·+ am

5 < 4am
1 .

Definition 2.1. LetA be ak-chordaln-gon. Then the numberm > 1 for which
we obtain

n∑
j=1

am
j = 2k(2r)m

is thecharacteristicof A in the notationChar(A). Herer is the radius of the
circumcircle ofA andaj = |AjAj+1|, j = 1, n.

Remark 2.2. By Theorem2.1, we have

(2.14) 1 < Char(A) < h(k),
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whereh(k) is given by (2.5).
In particular, if β1 = · · · = βn = (n− 2k) π

2n
, then

Char(A) = h(n, k),

whereh(n, k) is given by (2.4).

Remark 2.3. Since there are situations when certain anglesβj are close to0,
and other angles are close toπ/2, it is clear that instead of constraint (2.6) in
the proving procedure of Theorem2.1, we can take

β1 = · · · = β2k+1 =
π

4k + 2
, β2k+2 = · · · = βn =

π

2
.

Thus, instead of (2.14) it can be written

1 < Char(A) . h(k),

where Char(A) . h(k) means that Char(A) < h(k) and that Char(A) may be
close toh(k).

For example, letA be a1-chordal pentagon such that

β1 = β2 = β3 =
90.0000020

3
, β4 = β5 = 89.9999990.

Then
Char(A) ≈ h(1) = 2.818841678,

because

3 cosh(1) 90.0000020

3
+ 2 cosh(1) 89.9999990 = 1.999999962 ≈ 2.
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Example 2.6.LetA be1-chordal quadrilateral such that

β1 + β3 =
π

2
= β2 + β4.

ThenChar(A) = 2. This is clear, since

cos2 β1 + cos2 β3 = 1 = cos2 β2 + cos2 β4.

Thus
a2

1 + a2
2 + a2

3 + a2
4 = 2(2r)2.

Of course this property is not true for every1-chordal quadrilateral; there
are chordal quadrilaterals whereβ1 + β3 6= π

2
, compare Fig6.

C

A
1

A
2

A
3

A
4 1

2

3

4

Figure 6:
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Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 40

J. Ineq. Pure and Appl. Math. 5(1) Art. 1, 2004

http://jipam.vu.edu.au

Example 2.7.LetA be a2-chordal octagon such that

(2.15) β1 + β5 = β2 + β6 = β3 + β7 = β4 + β8 =
π

2
.

As an illustration, see Fig.7

C
1

5

A
1

A
2

A
3

A
4

A
5

A
8

A
7

A
6

Figure 7:

As
cos2 βj + cos2 βj+4 = 1, j = 1, 2, 3, 4,

thenChar(A) = 2. Thus we clearly deduce by
∑8

j=1 cos2 βj = 4 that

8∑
j=1

a2
j = 4(2r)2.
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Of course, instead of (2.15) we can assume that

βi1 + βi2 = βi3 + βi4 = βi5 + βi6 = βi7 + βi8 =
π

2
.

Hereij ∈ {1, 2, . . . , 8}.

Theorem 2.14.LetA be ak-chordaln-gon, wheren = 4k, and let

βi1 + βi2 = · · · = βin−1 + βin =
π

2
.

ThenChar(A) = 2.

Proof. Since4k
2

= 2k, we have

n∑
j=1

cos2 βij = 2k,

and this proves Theorem2.14.

Corollary 2.15. We have
n∑

j=1

a2
j = 2k(2r)2.

Theorem 2.16.LetA be a chordaln-gon such that

(2.16)
n−1∑
j=1

βj = (n− 2)
π

2
, βn = 0, 0 < βj <

π

2
, j = 1, n− 1.

ThenChar(A) ≤ 2.
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Proof. As it will be seen, this theorem is a corollary of Theorem2.1. First we
point out that (2.16) is obtained by puttingk = 1, βn = 0 into (2.1). Also,
let us remark that in (2.1) we can takeβn ≈ 0 as well. Therefore the proof of
Theorem2.16is a straightforward consequence of Theorem2.1where, instead
of (2.6), we write

β1 = · · · = β2k ≈
π

4k
, β2k+1 = · · · = βn−1 ≈

π

2
; βn = 0,

or, becausek = 1, we put

β1 = β2 ≈
π

4
, , β3 = · · · = βn−1 ≈

π

2
, βn = 0.

For these specified values ofβ1, . . . , βn we obtain

n∑
j=1

cos2 βj ≈ cos2 0 + 2 cos2 π

4
= 2,

and
n∑

j=1

cosm βj ≈ cosm 0 + 2 cosm π

4
< 2

whenm > 2. Theorem2.16is thus proved.

Corollary 2.17. Let the situation be the same as in Theorem2.16. Then there
is am such that

am
1 + · · ·+ am

n−1 = am
n , 1 < m ≤ 2.
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Proof. The assertion immediately follows from
∑n

j=1 a
m
j = 2(2r)m because

an = 2r.

Corollary 2.18. Under conditions of Theorem2.16, Char(A) = 2 only if n =
3.

Proof. Without loss of generality we can taken = 5 and consider the pentagon
in Fig. 8. By Theorem2.16, we have

∑5
j=1 cos2 βj ≤ 2. But if A3 → A5 and

1

2

3

4

A
1

A
2

A
3

A
4

A
5 C

r

Figure 8:

A4 → A5, then

β1 + β2 →
π

2
, β3, β4 →

π

2
, β5 = 0

and
∑5

j=1 cos2 βj → 2.
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Example 2.8.Specifyβ1 = 620, β2 = 650, β3 = 680, β4 = 750, then

5∑
j=1

cos3/2 βj = 1.957416 < 2,

5∑
j=1

cos7/5 βj = 2.050053 > 2.

Whenβ1 = 44.10, β2 = 46.90, β3 = 89.40, β4 = 89.60, then

5∑
j=1

cos2 βj = 1.9827268 < 2,

5∑
j=1

cos19/10 βj = 2.0183067 > 2.

Remark 2.4. As we can see, Theorem2.16 may be considered as a general-
ization of the Pythagorean theorem. For example, all positive solutions of the
equation

x
3/2
1 + · · ·+ x

3/2
n−1 = x3/2

n

are related to chordaln-gons whose characteristic is3/2.
Thus, the problem "find all positive solutions of the above equation" is in

fact the problem "find all anglesβ1, . . . , βn such that (2.16) is satisfied under
the constraint

n∑
j=1

cos3/2 βj = 2.”

http://jipam.vu.edu.au/
mailto:mradic@pefri.hr
http://jipam.vu.edu.au/


Certain Inequalities Concerning
Some Kinds Of Chordal

Polygons)

Mirko Radić

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 33 of 40

J. Ineq. Pure and Appl. Math. 5(1) Art. 1, 2004

http://jipam.vu.edu.au

This problem is obvious whenn = 3 since thenβ1 +β2 = π
2
. But the casen > 3

could be very difficult.

Theorem 2.19.LetA be ak-chordaln-gon. Then for every realp > 1, we
have

(2.17)
n∑

j=1

cosp βj > n

(
2k

n

)p

,

whereβ1, . . . , βn satisfy (2.1).

Proof. In [6, Theorem 2] it was proved that (2.17) holds for every positive inte-
gerp. Here we give an abbreviated and simplified proof of this result by which
we deduce the assertion of Theorem2.19.

By the Jordan-type inequality (1.6), i.e. by

cos βj > 1− 2

π
βj,

using the properties of the arithmetical mean, we can write

n∑
j=1

cosp βj ≥ n

(
1

n

n∑
j=1

cos βj

)p

> n

(
1

n

n∑
j=1

(
1− 2

π
βj

))p

= n

(
2k

n

)p

.

Indeed, here we have
n∑

j=1

(
1− 2

π
βj

)
= n− 2

π

n∑
j=1

βj = n− 2

π
(n− 2k)

π

2
= 2k.

This completes the proof of Theorem2.19.
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Corollary 2.20. Under the same assumptions as in Theorem2.19, the following
holds

ap
1 + · · ·+ ap

n > n

(
4kr

n

)p

.

Forp = 1 one obtains an interesting relation:

a1 + · · ·+ an > 4kr.

For example ifn = 7, k = 3, then
∑7

j=1 aj > 12r.
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3. Inequalities Concerningk-Inscribed Polygons
In this section we start with the equality (1.4):

(1.4) |β1|+ · · ·+ |βn| = [n− 2(m+ ν)]
π

2
+ 2τ

whereτ = −(βj1 + · · · + βjν ) andβj1 , . . . , βjν are the negative angles, while
Ind(A) = m.

Let λ be defined by2τ = λπ. Then (1.4) becomes

(3.1) |β1|+ · · ·+ |βn| = [n− 2(m+ ν − λ)]
π

2
.

Using the inequality (1.6) we can write

n∑
j=1

cos βj >
n∑

j=1

(
1− 2

π
|βj|
)

= n− 2

π

n∑
j=1

|βj| = 2(m+ ν − λ).

So, by (3.1) it follows that

(3.2)
n∑

j=1

cos βj > 2(m+ ν − λ).

In the caseInd(A) = k, ν = 0, we get the inequality (1.5).
It can be easily seen that

(3.3) ν − λ > 0.
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Let us remark that

2τ = 2
ν∑

j=1

|βij | < 2
(
ν · π

2

)
,

from which it follows that2τ < νπ.
For the sake of brevity, we denote in the sequel

(3.4) w = Ind(A) + ν − λ.

Now, we have the following theorem which is in fact a corollary of Theorem
2.1.

Theorem 3.1.LetA be ak-inscribedn-gon and let

(3.5)
n∑

j=1

|βj| = (n− 2w)
π

2
, 0 < |βj| <

π

2
.

Then there is aq such that

(3.6)
n∑

j=1

cosq βj = 2w, 1 < q ≤ h(w),

where

(3.7) h(w) =
log 2w

2w+1

log cos π
4w+2

if w is an integer,
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but ifw is not an integer, that is, whenλ = z+u, wherez ≥ 0 is an integer and
u is a positive number such that0 < u < 1, then

(3.8) h(w) =
log Ind(A)+ν−λ

Ind(A)+ν−z

log cos uπ
2(Ind(A)+v−z)

.

Proof. If w is an integer then the proof is quite analogous to the proof of Theo-
rem2.1.

In the case whenw is not an integer, then instead of (2.6), we have the
expressions

|β1| = · · · = |β2(Ind(A)+ν−z)| ≈
uπ

2(Ind(A) + ν − z)
,

|β2(Ind(A)+ν−z)+1| = · · · = |βn| ≈
π

2
.

Let us remark that now the equality from (3.5) can be written as
n∑

j=1

|βj| = [n− 2 (Ind(A) + ν − z)]
π

2
+ uπ

since

[n− 2(Ind(A) + ν − z − u)]
π

2
= [n− 2(Ind(A) + ν − z)]

π

2
+ uπ

Thus, from

2(Ind(A) + ν − z) cosh(w) uπ

2(Ind(A) + ν − z)
= 2w

we get (3.8).
Theorem3.1 is thus proved.
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Corollary 3.2. Letai = |AiAi+1|, i = 1, . . . , n. Then

n∑
j=1

am
j = 2w(2r)m, 1 < m . h(w).

Example 3.1. In Fig. 9 we have drawn an1-inscribed pentagonA, with r = 3
andβ1 = −60, β2 = 560, β3 = 280, β4 = −580, β5 = 700. In this case we have

C

3

A
1

A
2

A
3

A
4

A
5

Figure 9:

k = 1, Ind(A) = 0, ν = 2 and

5∑
j=1

βj = 900 =
π

2
radian,

5∑
j=1

|βj| = 2180 =

(
π

2
+ 2 · 64

90
· π
2

)
radian.
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Thus we can write

5∑
j=1

|βj| = (5− 2ν)
π

2
+ 2 · 64

90
· π
2

= (5− 2(ν − 0.71111111))
π

2
.

Sinceν = 2, we have

w = ν − 0.71111111 = 1.28888888, 2w = 2.57777776

λ = 0.71111111, z = 0, u = λ sinceλ < 1.

Finally, it can be written that

5∑
j=1

cosm βj = 2.571645882 < 2w for m = 1.85,

5∑
j=1

cosm βj = 2.578128456 > 2w for m = 1.84.
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[1] D.S. MITRINOVIĆ, J.E. PĚCARIĆ and V. VOLENEC,Recent Advances

in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht/Boston/London,
1989.

[2] B.H. NEUMANN, Some remarks on polygons,J. London. Math. Soc.,16
(1941), 230–245.

[3] P. PECH, Inequality between sides and diagonals of a spacen-gon and its
integral analog,̌Cas. Pro. Pčst. Mat., 115(1990), 343–350.
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