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1. Introduction

To estimate upper bounds on the maximum number of simultaneously successful
wireless transmissions and the maximum achievable per-node end-to-end through-
put under the general network scenario, Arpacioglu and Haamtiroduced the
following interesting inequalities. For the sake of clarity in presentation, we use the
notationargmin,. ;{S;} to denote the index of the smallest point in the £}

(j € J). If there are several smallest elements, we take the first one.

Theorem 1.1 ([l]). Let B(D) be a disk inR? having diameterD. Letn points
be arbitrarily placed inB(D). Suppose each point is indexed by a distinct integer
betweenl andn. Letl;; be the Euclidean distance between poingd ;. Define
themth closest point to point, a;,,, and the Euclidean distance between poeiand

themth closest point to point, u;,,, as follows:

Then

(1.1)

where

an = argmin {l;;},

jE{1,2,...,n},
JF#i

Qi = argmin {l;;},

je{1,2,..., n},
jelitule !

1<i1<n, 2<m<n—1,

1 <1< n,

Uim = lig,,, 1<i1<n, 1<m<n—1.

n
§ : 2
i=1

Cy =

mD?
2

C

[GVIN )

1>

1<m<n—1,

~ 0.3910.
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We observedd] that the interpoint distance sum inequalify. 1) can be simply
yet significantly strengthened.

Proposition 1.2. DefineB(D), D, n, l;j, Gim, Wim, c2 @S in Theoreni..1. Then

(1.2) i Uy <
=1

mD?
1<m <con,
2

C
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n 9 9 Yong Xia and Hong-Ying Liu
(1'3) E :uzm <nD" cn<m<n-—1 vol. 10, iss. 3, art. 74, 2009
=1

The proof follows from {.1) and the fact that,,, < D.
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2. Main Result

In this section, we show that the interpoint distance sum inequality\whenm = 1
can be further improved.

Theorem 2.1.DefineB(D), D, n, l;j, Gim, Wim, c2 @S in Theoreni..1. Then

n 2
Sk <o
— "~ (0.3972

1=

Proof. The case: = 2 is trivial to verify sincem = 1 andu;,,, < D. SO0 we assume
n > 3. The proof is based on that of Theorém [1]. Denote the disk of diameter
and centef by B;(x). Define the following sets of disks

Ry = {Bi(uim):1<i<n}, 1<m<n-1

First consider the disks iR;. As shown in [L], all disks in R; are non-overlapping,
i.e., the distance between the centers of any two disks is smaller than the sum of the
radii of the two disks.

Denote byA(X) the area of a regioX’. We try to find a lower bound offi,,, :=
A(B(D)N B;(wim))/A(Bi(uin)) foreveryl <i <mnandl <m < n—1. Pick any
point .S from the boundary oB(D) and consider the overlap ratio

s ._ ABD) N Bs(uim))
" A(Bs(uim))

Using Figurel, one can obtain the geometrical computation formufd; =
f(y) |y_"1m y Where

1<i<n, 1<m<n—1.

1 2 w1 1 /1
(2.1) fly) == (1 — E) arccos (§> + ? - —2

mw

II\',
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Actually f(y) is a decreasing function @f We havef? > f(1) due tou,,, < D.
Also f;,, > f5 . Settinge, := f(1), we obtain the following lower bound ofy,, for

Figure 1: Computation of the overlap ratio betwedefiD) and B, (u;, ).

everyl <:<nandl<m<n-—1,

Therefore the area of the parts of the disk&jpthat lie inB(D) is at least, A(B(D)).

V3

2
fim > ¢, Wherec, = = — — ~0.3910.
3 2T

Hence, forevery <i<nandl <m <n -1,

(2.2)

A(Bi(ttm) N B(D)) = e2A(Bi(tim))-
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For a given valuen, adding the: inequalities in £.2), we obtain

> CQZA uzm

Since all disks inR; are non-overlapping, we have

Vi<m<n-—1.

(2.3) Z A(B;(uim)

(2.4) ZA i(um) N B(D)) < A(B(D)).

Inequalities £.3) and @.4) imply

> 02214 uzm

Notice thatA(B(D)) = nD?/4 and A(B;(u;1)) = mu?, /4. Therefore,

n D2
(2.5) D up < —.
=1

C2

Also, it is easy to see that(y), defined in £.1), is a concave function. Thef(y)
has a linear underestimation, denoted by

l(y) =Cy+ k — kya

where

f(oi - (J)"‘(l) = lim f(y) = f(1) = 0.5 — ¢ ~ 0.1090.

Figure 2 shows the variation of (y) andl(y), respectively. Figur& shows the
variation of f (y) — [(y) with respect tq;.

k=
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Figure 3: Variation off (y) — I(y).

Adding all then inequalities in £.6) for a givenm, we obtain

ZA (i) N B(D))
> (co + k) ZA (Wim)) Zuzm (Wim)),

Using (2.4) and the factsA(B(D)) = 7 D? /4 and A(B;(u;)) = wu? /4, we obtain

n k n
2 2 3
(2.7) D* > (co + k) ;uil D ;Uu

Vi<m<n-—1.
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Now consider the following optimization problem & 3):

(2.8) maxzufl

i=1
2.9 S.t. uy; < —
(2.9) 2 s

The objective functiond.8) is strictly convex and the feasible region defined by
—(2.10 is also convex. Since > 3 and2 < é < 3, the inequality 2.9) holds at
any of the optimal solutions. Therefore the optimal solution2d)(- (2.10 must
occur at the vertices of the set
n ) D2
il) - »:—,0<Z'§D,.:]_,...7 .
(us1) ; uz P U i n
Any (u;) with two components lying strictly betweénand D cannot be a vertex.
Therefore every optimal solution of ) — (2.10 has LéJ components with the
value D, one component with the valuﬁ/é — LéJD and the others are zeros,

where| x| is the largest integer less than or equaktoThen the optimal objective

value is ,
1 1 1 2
LG e
Cy (&) Cy

In other words, we have proved for valigh that

n 3
Z 1 1 1 2
1 Ca C2 Co
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Now (2.7) becomes

(211) D*> CQZZZ;UZ% + k <gu§1 - (EJ - (6—12 — ED2> D2> :

Then we have
o (e (R G- 1))
;ufl < 5 (1 + k;é) .

Comparing with 2.5), we actually obtain a new :

(2.12) ey = — ~ 0.3957

such that

lteratively repeating the same approach, we obtain a seqyefide(i = 1,2,...),
wherec®) = ¢, ¢V = ¢ and

(2.13) D = 05

k(b G- DY)

Clearly, we can conclude that) < % for all i since the denominator above is greater
than1. Secondly, we prove that? > 5 for all i by mathematical induction. We
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have shown that® > 1 andc™") > L. Now assume® > 1. Since
1 R N (N I I A
|\ al) Sla|T\@ @)= @
we have

) 0.5 0.5 0.5

1
( _
C i 1 g P > =,
1+k<tc<1i)J+(c<1i>_L<_li>J)2> 1+ 143k 3

To sum up, we obtaig < ¢ < 1, which implies that| 15| = 2. Therefore, the
iterative formula of(t1) (2.13 becomes

D) _ 0.5
_ .
1k (24 (5 -2)°)

It is easy to verify that the sequeng€é”} is monotone increasing with a limit value
0.3972. o
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3. Extension

Theorem 3.1. Let B(D) be a sphere ifR* having diameterD. Letn points be
arbitrarily placed in B(D). l;;, aim, um, are similarly defined as in Theorefinl.
Then

n

3.1 3 ——

(3.1) 2 "1 = 03168

(3.2) Zuf’mg m , 2<m<c3n,
i=1 cs

(3.3) Zuf’m <nD? en<m<n-—1,
i=1

wherec; = 0.3125.

Proof. To begin with, we prove the first inequalit$.(). The case: = 2 is trivial
sincem = 1 andu;,,, < D. So we assume that> 3. The proof is based on that of
Theoreml.1[1]. Denote the sphere of diameteand cente by B;(x). Define the
following sets of spheres

Ry = {Bi(uim):1<i<n}, 1<m<n-1

First consider the spheres iR;,. As shown in [], all spheres inR; are non-
overlapping, i.e., the distance between the centers of any two spheres is smaller
than the sum of the radii of the two spheres.

Denote byA(X) the volume of a regionX. We try to find a lower bound on
fim == V(B(D) N B;(tin))/V (Bi(uim)) for everyl <i <nandl <m <n — 1.
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Pick any pointS from the boundary o3(D) and consider the overlap ratio

V(B(D) N Bs(uim))
3.4 S ,
( ) m V(BS(uzm))

Using a3-dimensional version of Figuri one can obtain the geometrical com-
putation formula:f3, = f(y)|,—uz , where

1<i<n, 1 <m<n—1.

1 3y
Actually f(y ) is a decreasing function gf We havef: > f(1) due tou,,, < D.

Also f;,, > f> . Settinges := f(1), we obtain the foIIowmg lower bound ofy,,, for
everyl gzgnandl <m<n-1,
5)
fim > c3, wWhere c¢3= 6= = 0.3125.

Therefore the area of the parts of the disk&jpthat lie inB(D) is atleast; A(B(D)).
Hence, forevery <i<nandl <m <n -1,

(3.5) V(Bi(uiwm) N B(D)) = ¢V (Bi(wim)).

For a given valuen, adding the: inequalities in £.5), we obtain

> 032‘/ uzm

Since all spheres iR; are non-overlapping, we have

Vi<m<n-—1.

(3.6) }:v (Ui )

(3.7) 2)/ i(uim) N B(D)) < V(B(D)).
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Inequalities £.6) and 3.7) imply

V(B(D)) > ¢s Y V(Bj(uim)).

=1

Notice thatV’ (B(D)) = D3 /6 andV(Bi(uﬂ)) = 7u3, /6. Therefore,

3.8 E < :
( ) p uzl — 03
Definingk = = = 0.1875, we have
Uim Uim,
) — > — .
fim > fin=1f < ) cs+k—k i)

Therefore, forevery <i: <nandl <m <n —1,

Uim

(3.9) V(Bi(uim) N B(D)) = (c3 + k)V (Bj(uim)) — k D V(Bi(uim))-

Adding then inequalities in £.9) for a givenm, we obtain

(3.10) ZV (i) N B(D))

(c3+ k) Z V(Bi(tim)) Zulm

Using (3.7) and the fact/(B(D)) = nD?/6 andV (B;(u;1)) = wu3, /6, we have

n k n
3 3 4
(3.11) D° > (c5 + k) ;uil D ;Uu

i(Wim)), Y1<m<n-—1.
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Now consider the following optimization problems £ 3):

(3.12) max Z ug,

i=1
3.13 3 <«
(3.13) 2 s

The objective function.12) is strictly convex and the feasible region defined by
(3.13 — (3.19) is also convex. Since > 3 and2 < - < 3, the inequality .13
holds at any of the optimal solutions. Therefore the optimal solutions .aP) —
(3.14) must occur at vertices of the set

3 .
U; :E upy =—,0<u; <D;i=1,...,n,.
{( ! i=1 b 1 }

Any (u;) with two components lying strictly betweénand D cannot be a vertex.
Therefore every optimal solution 08(.2) — (3.14) has LéJ components with the

value D, one component with the val — L%JD and the others are zeros,

where|z] is the largest integer less than or equaktoThen the optimal objective

value is .
1 1 1 3
G-
C3 C3 C3
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In other words, we have proved for valigh that

n 4
Z 1 1 1 3
i1 C3 C3 C3

Now (3.11) becomes

(3.15) D*> cg,;ui’l +k <; uf — EJ + (6—13 - ED) Dz) .

Then we have
P (1o ([2]+ (- L%J)?’)).

us
Z 1l = C3<1+l€é)

=1

Comparing with 8.8), we actually obtain a new :

C3 (1 + k’é)
(3.16) ot ~ 0.3156

Cren (] (- [D))

n 3
3 <D_
uy; < T

i=1 3

lteratively repeating the same approach, we obtain a seqyefide(i = 1,2, ...),
wherec® = ¢3, M) = ¢ and

such that

0.5

1+k <L:(1>J + (- u)J)%)

(3.17) ) =
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First we conclude that? < % for all .. We prove this by mathematical induction.

We havec!® = 0.3125 < ;. Now assume that”) < £, which also implies 5| >

3. Then based or3(17), we have

>

D) 0.5
- 4
1 1 1 3
L+k ([c(i)J + (37 — Lch)S)
o 05 _ 05 _1
Ttk T 143k 3
Secondly, we prove
: 1
(@) > —
“ 7
for all i by mathematical induction. We have shodfi > 1. Now assume® > 1.
Since
1 R N I T AN
@\~ |@]) =l T\ @) T @
we have
) _ 0.5 0.5 0.5

k() + (G

To sum up, we obtaid < ¢ < 1, which implies that
iterative formula £.13) of c+1) becomes
0.5

i) —
1+k<2+ (L —3)

[V

;

1
c(®

1
> —.
DY) 1+ E 144k 4

| = 3. Therefore, the
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It is easy to verify that the sequeng€?} is monotone increasing with a limit value
0.3168.

Next, consider the spheresh, for every2 < m < n—1. In this case, there can
be overlaps between some pairs of sphereB,in However, as shown irl], any
arbitrarily chosen point withirB(D) can belong to at most. overlapping spheres
from R,,. Then for every2 < m <n — 1, we have

D V(Bi(ui) 1 B(D)) < mV (B(D)).

It follows that .
mD? > c3 Z ug).
=1

The last inequality¥.3) directly follows from the fact;,,, < D. [
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