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ABSTRACT. In this paper, we study a problem of geometric inequalities for-aimplex. Some
new geometric inequalities for a simplex are established. As special cases, some known inequal-
ities are deduced.
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1. INTRODUCTION

Let o, be an n-dimensional simplex in then-dimensional Euclidean spacé™,
T = {Ap, A1, ..., A,} denote the vertex set of,, V' the volume ofs,,, R andr the circum-
radius and inradius of,,, respectively. Foi = 0,1,...,n, letr; be the radius ofth escribed
sphere ob,,, F; the area of théth facef; = Ag--- A;_1A4;,1--- A, Of 0,,. Let P be an arbitrary
interior point of the simplex,,, d; the distance from the poirft to theith facef; of o,,, h; the
altitude ofo,, from vertexA, fori =0,1,...,n.

Let ag, a; anda, denote the edge-lengths of trianglgA; A, (2-dimensional simplex). An
important inequality for a triangle was established by désee [1]) as follows:
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Let P be an arbitrary interior point of the trianglé, A; A,. Gerasimov (see [2]) obtained an

inequality for the triangled, A, A, as follows:
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2. MAIN RESULTS

We will extend inequalitieg (I} 1) and (1.2) to ardimensional simplex. Our main results are
contained in the following theorem:

Theorem 2.1. For then-dimensional simplex,, we have

- n F,Zn/(nfl) (n i 1)n 3n2/2(n—1)
@ iz:; o TiATigr Ty nt(n+ 1)/ (ph)n/(=l)?

with equality iff the simplex,, is regular.
By lettingn = 2 in relation [2.1), inequality] (I}1) is reobtained.

Theorem 2.2.Let P be an arbitrary interior point of the simplex,, and letd € (0, 1] be a real
number. Then we have

n

do - dirdiyy---dy (n)* n—2(n—1)0
(2:2) Zo (Fo- Fiy Figq -+ F)%1 = (n +1)(n=DA=6)pn(E-1) v ’

with equality iff the simplex is regular and the poinP is the circumcenter of,,.

If we takef = D)

Corollary 2.3. LetP be an arbitrary interior point of the simplex,. Then we have
do dz 1d,+1 dn (n‘)n/(”_l)
(3) ZO (Fo-FiaFior - B0 = (4 1) 2D/ 1)

in inequality @) we obtain the following corollary:

n

with equality iff the simplex,, is regular and the poinP is the circumcenter of,,.

If n=2in mequallty [2.8), then inequality (1.2) follows from inequality (2.3).
By takingf = - in mequallty .) we obtain a generalization of Gerber’s inequality as
follows:

Corollary 2.4. Let P be arbitrary interior point of the simplex,,. Then

n n!
(2.4) Zdo coediadip o dy < (n+ 1)(n—1)/2nn/2v’

with equality iff the simplex,, is regular.

Using inequality[(2.4) and the arithmetic-geometric mean inequality we get Gerber’s inequal-
ity [3] as follows:

n|)(n+1)/n

(n+1)/n
(2-5) ]]():dz = pn+l) /2 n+ 1)1/2nv )
Theorem 2.5.Let P be an arbltrary interior point of the simplex,. Then we have
2.6 )l ——
(2.6) Zdo di- ldz+1 dp 2 (1 R+’
with equality iff the simplex,, is regular and the poinfP is the circumcenter aof,,.
If the point P is the incenter/ of the simplexs,, i.e. d; = r(i = 0,1,...,n), then the
following n-dimensional Euler inequality stated in [4] is obtained fr¢m|(2.6):
(2.7) R > nr.
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3. LEMMAS AND PROOFS OF THEOREMS

To prove the theorems stated above, we need some lemmas as follows.
Letm; (: = 0,1,...,n) be positive numberd/,;,..,, denote the:-dimensional volume of
the k-dimensional simplexi; A;, - -- A;, for A;,, A;,, ..., A, € 7. Put

M, = Z MMy * mlk‘/;iuzk’ (1 <k< TL),
0<ip<i1 <--<ix<n
MO = Zml
1=0
Lemma 3.1. For positive numbersy; (i = 0, 1,...,n) and thern-dimensional simplex,,, we
have
1o L= DT | I~k 7 rk
(3.1) M, > [(n—k)!(k!)fﬂ]l(n"Mo) My, (1<k<l<n),
with equality iff the simplex,, is regular andmg = m; = - - - = m,,.
Lemma 3.2.

n # 3n 17
1 n D)
(3.2) 015) 257?WE(5§) v

with equality iff the simplex,, is regular.
For the proof of Lemmds 3.1 and B.2, the reader is referred to [5] or [1].

Lemma 3.3.

(3.3) Z ho«+ hi—thiy1---hy > (n+1)(ny)",

7” --./r‘A_ T‘ --./r‘
i—0 0 i—11i4+1 n

with equality iff the simplex,, is regular.

For the proof of Lemmp 33, see [5].

Lemma 3.4.

n/2 1 (n+1)/2
(3.4) yo ot U,
n!

with equality iff the simplex,, is regular.
This is also known, seé|[5] ar][1].

Proof of Theorern 2]1 Without loss of generality, let, < F; < --- < F,. By the known
formula ([1])

nV )
(3.5) ri:Z;L:OFj_QFi, (1=0,1,...,n),
it follows thatrg <r; <...- <r, and
1 < 1 < 1
jl;[le”’j - gFjTj - E) Eyry
I j#n
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Using the Chebyshev inequality, we have

n n/ n—1) n 1/ n—1)
(3.6) Z I~ (HF) Z e,
17& 7#1

() () (S

SubstitutingF; = “ (j = 0,1,...,n) into the right side of mequallt .6) and using the
arithmetic- geometrlc mean inequality we get

n - 1)

1 1/(n—1) 1 =ho - hicthipr - hy
( ) H 7" ~ n+ 1 (i_o ) <i_0 1 (TLV)” — ro: T . T

ri—1Ti+1

J#Z

n o
F; n
y (11_[0 ) ZhO"'hi—lhi—i—l"'hn
- L ’]"0- .

(nV)"

By inequalities[(3.]7),[(3]2) andl (3.3) we obtain relatipn](2.1). It is easy to see that equality in
(2.7) holds iff the simplexr,, is regular. The proof of Theoreim 2.1 is thus complete. O

T 1Tip1 T

Proof of Theorem 2|2Takingk = n — 1, [ = n in inequality [3.1), we can write

n n n n—1
2 2(n—1
(3.8) (; Mg+ MMy * - My Fy > = TL'2 (Z mz) (g mz) V2L,

By puttingrmg - - - m;_1miyq - -m, = NF;72 (6 =0,1,...,n) in equality [3.8), we get

n (n—l n n 2
0 (1) ()= 55 i) (57)

We now prove that the following inequality (3]10) is valid for any numbes (0, 1]:

1 "on F29 4+ 1)2n-1)0 1)2(n-1)¢
(3.10) (;;A> [17°> (ZA> (Z ) u nnge) ' (?nzm% '

i=0 Ai

Whend = 1, inequalities|(3.10) and (3.9) are the same, so inequélity|(3.10) is valit<ot.
For6 € (0, 1), using inequality[(3]9) we have

(3.11) <%§A>nﬁ1ﬂ"
= ( ZA) ﬁFf

(nV)2(n*1) n Fz‘2
(n— 1) (g Ai) <i:o AT)
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By Maclaurin’s inequality ([1]) we have

<n+ 1 Z)\O 2 l)\z+1 )\n)
i.e.

(3.12) ( ZA) - & <11A> (:0 Al)

3=
VAN
3
—+ | =
—_
]
b

From [3.11) and (3.12) we can write
(3.13) lzn:)\ nﬁp29> Z)‘ - (F29>$- Zn:( ) g1
| "o l i=0 L i= i ] i )\1 0

e ey

By Hdlder’s inequality ([1]) we have

196 1 1-60

= (F2N\? 1\ o
3.14 ! . —_— > L
(@14 [Z(A) [Z<A) ] Dy
Using (3.13) and (3.14) we get relatign (3.9).

Taking\; = d;F; (1 = 0,1,...,n) in equality [3.9) and noting the fact thal;" | d;F; = nV/,
we get inequality[(2]2). Itis easy to prove that equality in|(2.2) holds iff the simpJésregular
and the point” is the circumcenter of,,. The proof of Theorern 22 is thus complete. O

Proof of Theorer@Slnequality (3.9) can be written also as

(3.15) V2(n I)Z)\o PYIRD VIRRERD W J e (i )\z') ﬁFf-
i—0 =0

Let V' denote the volume of the-dimensional simplex/, = Aj A’ --- Al, F! being the area
of theith facef; of o/,. By Cauchy’s inequality and inequality (3]15), we have

3n

n n— n 1
v ZAO Aicidigs - AL F]

D=

(3.16)

VQn 2 Z)\O 1 1)\2+1 /\nF;Q

=

3n

n n— /
2( Y Z )\0 z 1>\7,+1 )\n (Fz)2

< () (Hﬂ) (nﬂ')

If we suppose that;, is a regular simplex withF| = F] = --- = F = 1. then

1
12\ 2(n—1)
r_ 2 (1
V' = (n + 1) (n3n> )

X
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so inequality[(3.1)6) becomes

1)(n—=1)/2,3n/2 n " n
Gan DT S mg(z&) [~
n:
=0 =0

By letting\g =\ =--- =\, = 1in mequallty (3.1F), we get

1 pn/2(n=1) " 1 "
(3.18) v A0 (1 4 1) /20D 2_; Fy-Fy1Fyyy - F, '

Now by Cauchy'’s inequality we have

do-dj_1d;yq - > (n+1)?,
(;0 o ><Zdo lldm d>< )

i.e.

2
(3.19) Z > (n+1) .
dO z 1d7,+1 dn =
Sdo diadis - d,

Using [3:19),[Z4) and(318), we get

. 1
3.20
G20 > G i
- <n+ 1)(n+3)/2nn/2 1

n! 1%

1
(n+ 1)(n2+n—4)/2(n—l)nn2/2(n—1) n - (n—1) 1 =D
> : e .
> e (2F) (mmr)

By inequality (3.20), formuld ", F; = ﬂ and the known inequality[([1]):
=0

n?—
(3.21) HF 1)( 1)/2 1
’ - n|n+1n(n2 —3n—4)/2 ’

we get

3.22
622 30—

1

ifldiJrl U dn

r Rntl :

Relations|(3.22) and (3.4) imply inequalify (R.6). Itis easy to prove that equality i (2.6) holds
iff the simplexo,, is regular and the poin® is the circumcenter of,,. The proof of Theorem
[2.5 is thus complete. O

1
> (n 4 1) B/2A=D) 2 n=2/2a=1) i/ (1) (K) ol
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