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ABSTRACT. In this paper, an answer to a problem proposed by L. Bougoffa is given. A consol-
idation of Qi’s inequality and Bougoffa’s inequality is obtained.
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1. I NTRODUCTION

In the paper [7] F. Qi proposed the following open problem, which has attracted much atten-
tion from some mathematicians (cf. [1, 5, 6, 8]).

Problem 1.1. Under what conditions does the inequality

(1.1)
∫ b

a

[f(x)]tdx ≥
(∫ b

a

f(x)dx

)t−1

.

hold for t > 1?

Similar to Problem 1.1, in the paper [2] L. Bougoffa proposed the following:
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Problem 1.2. Under what conditions does the inequality

(1.2)
∫ b

a

[f(x)]tdx ≤
(∫ b

a

f(x)dx

)1−t

.

hold for t < 1?

By using Hölder’s inequality, L. Bougoffa obtained an answer to Problem 1.2 as follows

Proposition 1.1. For a given positive integerp ≥ 2, if 0 < m ≤ f(x) ≤ M on [a, b] with
M ≤ m(p−1)2/(b− a)p, then

(1.3)
∫ b

a

[f(x)]
1
p dx ≤

(∫ b

a

f(x)dx

)1− 1
p

.

We can see that the condition

(1.4) 0 < m ≤ f(x) ≤ M on [a, b] with M ≤ m(p−1)2/(b− a)p

is not satisfied whenmin
[a,b]

f(x) = 0.

In this paper, we firstly give an answer to Problem 1.2, in which we allowmin
[a,b]

f(x) = 0 and

p unnecessarily to be an integer. Secondly, we obtain a consolidation of Qi’s inequality and
Bougoffa’s inequality.

2. M AIN RESULTS AND PROOFS

Theorem 2.1. Let p > 2 be a positive number andf(x) be continuous on[a, b] and differen-
tiable on(a, b) such thatf(a) = 0. If [fp−2]′(x) ≥ pp(p − 2)/(p − 1)p+1 for x ∈ (a, b), then

(2.1)
∫ b

a

[f(x)]
1
p dx ≤

(∫ b

a

f(x)dx

)1− 1
p

.

If 0 ≤ [fp−2]′(x) ≤ pp(p− 2)/(p− 1)p+1 for x ∈ (a, b), then the inequality (2.1) reverses.

Proof. If f ≡ 0 on [a, b], then it is trivial that the equation in (2.1) holds. Suppose now thatf is
not identically 0 on[a, b] and[fp−2]′(x) ≥ 0 for x ∈ (a, b), we may assumef(x) > 0, x ∈ (a, b].
This implies that both sides of (2.1) are not 0.

If [fp−2]′(x) ≥ pp(p− 2)/(p− 1)p+1 for x ∈ (a, b), thenf(x) > 0 for x ∈ (a, b]. Thus both
sides of (2.1) are not 0. By using Cauchy’s Mean Value Theorem twice, we have∫ b

a
[f(x)]

1
p dx(∫ b

a
f(x)dx

)1− 1
p

=
[f(b1)]

1
p
−1

(1− 1
p
)
(∫ b1

a
f(x)dx

)− 1
p

(a < b1 < b)(2.2)

=

( ∫ b1
a

f(x)dx

(1− 1
p
)p[f(b1)]p−1

) 1
p

=

(
1

(1− 1
p
)p(p− 1)[f(b2)]p−3f ′(b2)

) 1
p

(a < b2 < b1)

=

(
1

(p−1)p+1

pp(p−2)
[fp−2]′(b2)

) 1
p

≤ 1.
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So the inequality (2.1) holds.
If 0 ≤ [fp−2]′(x) ≤ pp(p− 2)/(p− 1)p+1, then (p−1)p+1

pp(p−2)
[fp−2]′(b2) ≤ 1, which, together with

(2.2), implies that the inequality (2.1) reverses. �

In the paper [3], Y. Chen and J. Kimball gave an answer to Problem 1.1 as follows

Proposition 2.2. Let p > 2 be a positive number andf(x) be continuous on[a, b] and dif-

ferentiable on(a, b) such thatf(a) = 0. If [f
1

p−2 ]′(x) ≥ (p − 1)
1

p−2
−1 for x ∈ (a, b), then

(2.3)

(∫ b

a

f(x)dx

)p−1

≤
∫ b

a

[f(x)]pdx.

If 0 ≤ [f
1

p−2 ]′(x) ≤ (p− 1)
1

p−2
−1 for x ∈ (a, b), then the inequality (2.3) reverses.

Thus, combining Theorem 2.1 and Proposition 2.2, we can obtain another result of this paper,
which gives a consolidation of Qi’s inequality and Bougoffa’s inequality. To our best knowl-
edge, this result is not found in the literature.

Theorem 2.3. Let p > 2 be a positive number andf(x) be continuous on[a, b] and differen-
tiable on(a, b) such thatf(a) = 0.

(1) If [fp−2]′(x) ≥ pp(p− 2)/(p− 1)p+1 and[f
1

p−2 ]′(x) ≥ (p− 1)
1

p−2
−1 for x ∈ (a, b), then

(2.4)

(∫ b

a

[f(x)]
1
p dx

)p

≤
(∫ b

a

f(x)dx

)p−1

≤
∫ b

a

[f(x)]pdx.

(2) If 0 ≤ [fp−2]′(x) ≤ pp(p − 2)/(p − 1)p+1 and 0 ≤ [f
1

p−2 ]′(x) ≤ (p − 1)
1

p−2
−1 for

x ∈ (a, b), then the inequality (2.4) reverses.

Corollary 2.4. Letf(x) be continuous on[a, b] and differentiable on(a, b) such thatf(a) = 0.
(1) If f ′(x) ≥ 27

16
for x ∈ (a, b), then

(2.5)

(∫ b

a

[f(x)]
1
3 dx

)3

≤
(∫ b

a

f(x)dx

)2

<

∫ b

a

[f(x)]3dx.

(2) If 0 ≤ f ′(x) ≤ 1 for x ∈ (a, b), then

(2.6)

(∫ b

a

[f(x)]
1
3 dx

)3

>

(∫ b

a

f(x)dx

)2

≥
∫ b

a

[f(x)]3dx.

Proof. Setp = 3 in Theorem 2.3. �

In order to illustrate a possible practical use of Corollary 2.4, we shall give two simple exam-
ples in which we can apply inequality (2.5) and (2.6).

Example 2.1. Let f(x) = ex − e on [1, 2], we see thatf ′(x) > e > 27
16

for x ∈ (1, 2), other
conditions of Corollary 2.4 are fulfilled and straightforward computation yields(∫ 2

1

(ex − e)
1
3 dx

)3

≈ 1.56 <

(∫ 2

1

(ex − e)dx

)2

≈ 3.81 <

∫ 2

1

(ex − e)3dx ≈ 18.74.

Example 2.2. Let f(x) = ex−e
10

on [1, 2], then e
10
≤ f ′(x) ≤ e2

10
, other conditions of Corollary

2.4 are fulfilled and direct calculation produces that[∫ 2

1

(
ex − e

10

) 1
3

dx

]3

≈ 0.156 >

(∫ 2

1

ex − e

10
dx

)2

≈ 0.038 >

∫ 2

1

(
ex − e

10

)3

dx ≈ 0.019.
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