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ABSTRACT. Though connections between a well established theory of analytic univalent func-
tions and hypergeometric functions have been investigated by several researchers, yet analogous
connections between planer harmonic mappings and hypergeometric functions have not been
explored. The purpose of this paper is to uncover some of the inequalities associating hypergeo-
metric functions with planer harmonic mappings.
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1. INTRODUCTION

Let H be the class consisting of continuous complex-valued functions which are harmonic
in the unit diskA = {z : |z] < 1} and letA be the subclass df consisting of functions which
are analytic inA. Clunie and Sheil-Small in_[1] developed the basic theory of planer harmonic
mappingsf € H which are univalent im\ and have the normalizatiof(0) = 0 = £,(0) — 1.
Such functions, also known as planer mappings, may be writt¢n=aé + g, whereh, g € A.
A function f € H is said to be locally univalent and sense-preserving if the Jacoljign=
|W|> —|¢'|” is positive inA; or equivalentlylg’(z)| < |//(z)| (z € A). Thusforf = h+ge€ H
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2 OM P. AHUJA AND H. SILVERMAN

we may write

(1.1) h(z) =z + ZAnz”7 g(z) = Zan”, |By| < 1.
n=2 n=1

Let Sydenote the family of functions+g which are harmonic, univalent, and sense-preserving
in A whereh, g € A and are of the fornj (1I]1). Imposing the additional normalization condition
fz(0) = 0, Clunie and Sheil-Small[1] distinguished the cla4s from Sy. Both the families

Sy andSY are normal families. But$?, is the only compact family with respect to the topology
of locally uniform convergence [1].

Let .S}, and Ky be the subclasses §f; consisting of functiong which mapA, respectively,
onto starlike and convex domains.fif = h; +g;, j = 1,2 are in the clas$'y (or S%,), then we
define the convolutiorf; * f, of f; and f,in the natural wayh, * hy + g1 * go. If @1 ande, are
analytic andf = h + g is in Sy, we define

(1.2) JH(01+ §y) = hx ¢+ g ¢s.

Let a, b, c be complex numbers with £ 0, —1,—2,—3,.... Then the Gauss hypergeometric
function written as F (a, b; ¢; z) or simply asF'(a, b; c; z) is defined by

(2.3) F(a,b;c;2z) = Z EZ;:E%:z”,

where(2),, is the Pochhammer symbol defined by
F'A+n)
1.4 ANp = ————+
@4 W= —Fy
Since the hypergeometric series[in {1.3) converges absolutdly iifollows that F'(a, b; ¢; =)
defines a function which is analytic iy, provided that: is neither zero nor a negative inte-
ger. As a matter of fact, in terms of Gamma functions, we are led to the well-known Gauss’s
summation theorem: Re(c — a — b) > 0, then
L(e)T(c—a—10)
0,—1
Mle—ar(c—p) 7 &b
In particular, the incomplete beta function, related to the Gauss hypergeometric fuption,z),
is defined by

=AA+1)---A+n—-1)forn=1,2,3,... and(\)y=1.

(1.5) F(a,b;c;1) =

(1.6) ola,c;2) == zF(a,1;¢2) = Z Easnz”“, z€A, c#0, —1, —2,....
C)n
n=0
It has an analytic continuation to theplane cut along the positive real axis from Isto Note
thaty(a, 1; z) = o Moreover,p(2,1; z) = . )2 is the Koebe function.

The hypergeometric series in (IL.3) ahd [1.6) converge absolutelyand thusF(a, b; ¢; z)
andy(a, c; z) are analytic functions if\, provided that is neither zero nor a negative integer.
For further information about hypergeometric functions, one may refer td [2], [6],and [11].

Throughout this paper, €1(z) := ¢,(z)+¢2(z) be a function where, (z) = ¢, (a1, by; ¢1; 2)
andos(z) = ¢s (ag, bo; co; 2) are the hypergeometric functions defined by

o e shlan bresz) = 2 Z aclnn 11<<b11>)n e
(1.8) Pa(2) = zF(az, by;c2;2) — 1 = i (ézén((bf))nzn, asby < co.
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It was surprising to discover the use of hypergeometric functions in the proof of the Bieberbach
conjecture by L. de Branges![3] in 1985. This discovery has prompted renewed interests in
these classes of functions. For example, seel[7], [8],land [9].

However, connections between the theory of harmonic univalent functions and hypergeomet-
ric functions have not yet been explored. The purpose of this paper is to uncover some of the
connections. In particular, we will investigate the convolution multiplig¥ép; + ¢,), where
¢1, ¢ are as defined by (1.7) and (]L.8) afids a harmonic starlike univalent (or harmonic
convex univalent) function ig\.

2. MAIN RESULTS

We need the following sufficient condition.
Lemma 2.1([4,[10]). For f = h + g with h and g of the form [(L.1L), if

(2.1) Z yA|+Z 1B,| < 1,

n=2

thenf € Sy.

Theorem 2.2.1f a;,b; > 0, ¢; > a; +b; + 1 for j = 1,2,, then a sufficient condition for
G = ¢1 + ¢, to be harmonic univalent ik andG € S%, is that

a by agbsy

(2.2) (1+ ) F(ai,by;e051) + F(ag, by;c;1) < 2.

cl—al—bl—l Cg—ag—bg—l

Proof. In order to prove thafr is locally univalent and sense-preservingnwe only need to

show that¢) (z)| > |¢5(2)|, z € A. In view of (1.7), [1.8),[(1.4) and (I.5) we have

|61(2)] = 1+Zn ”7112” !
e . ( ) —1(b ) (@1)n— 1(bl)n 1
> 1= DS Z G >
. a1b1 > (a1 + 1)n 1 bl + 1 e
=1- C1 ; (Cl —+ 1) ;
_9_ a1b1 ] F(Cl + 1)F(C1 — a; — bl - 1) . F(cl)F(cl —a; — b1>
c ['(ey —a))l(e; — by) Ly —a1)T(er — by)
=2 — (61 — a?lflbl — - 1) F(ai,by;e1;1).
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Again, using[(Z.R),[(1]5)[ (T} 3), and (1.8) in turn, to the above mentioned inequality, we have

a2b2
|61(2)] = o — g — by — 1F(a2, ba;c2;1)
CLQbQ F(CQ + 1)F(Cg — Q9 — bQ — 1)
Cy F(CQ — CLQ)F(CQ — bz)

. (a2)n+1(b2)ns1
_T,Z% (02)n+1(1)
- e

n( 2)n(b2)n -1
— (c2)n(1)n

To show that7 is univalent inA, we assume that,, z, € A so thatz; # z,. SinceA is simply
connected and convex, we hag) = (1 — t)z; + tzs € A, where0 < ¢t < 1. Then we can
write

= |95(2)].

Fe) =Pl = | (2= 2064 00 + G = 22) 5 o)

so that

(2.3) Re L2 = F(z1) _ /01 Re K¢’1 (2 () + ﬂ) m] dt

Z9 — 21 Z9 — 21

1
> [ Redt (2 (0) 16 (= o)l
0
On the other hand,
Re ¢ (2) — [d5(2 )l
a ot et . (a2)n(D2)n | e
>1—;n 011 1|z| 1—ch22—2|z| !

= (c2)u(D)n
s - (al)n—l(bl)n—l R n(a2)n(b2)n
>1 ;( 1+ 1) (Cl)nfl(l)n—l ; (Cz)n(l -

2 (ag + 1)_1(by + 1)yt
(c2+1)n-1(1)n

asby

_ - (a1)n-1(b1)n—1 _ C (a1)n(b1)n _ a2bs
Z (c1)n-1(1)n—2 Z

—
[
"
~—
3
—~
—_
~
3
Q
V)
N
Il
—_

F(ag, by;co; 1)

02_a2_b2—1

Thus [2.8) and the above inequality leadf¢z;) # F(z;) and hence is univalent inA. In
order to prove thaff € S};,using Lemma 2]1, we only need to prove that

(2.4) in(al)”_l(bl)”_l n in(%)n(bz)n <1
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Writing n = n — 1 + 1, the left hand side of (2/4) reduces to

o0

al 41 b1 D, li (a1)n(b1)n

ai bl

asby x~ (az 4 1) (ba + 1),
D

(c1 + n(Dn (ca +1)n(1)n

n n=0

b b
= F(ay,by;cq51) ( @i + 1) + 4252 F(ag,bo;co;1) — 1.

Cl—(ll—bl—l CQ—CLQ—bQ—]_

The last expression is bounded above by 1 provided thdt (2.2) is satisfied. This completes the
proof. O

Lemma 2.3([5,10]). For f = h + g with h andg of the form|[(1.]1), if

iNQ |An| + in2 |Bn| <1
n=2 n=1

thenf € Ky.

Theorem 2.4.1f a;,b; > 0,¢; > a; +b; + 2, for j = 1,2 then a sufficient condition for
G = ¢1 + ¢, to be harmonic univalent ich andG € Ky, is that

3aib (a1)2(b1)2
F bi;cq;1
cl—al—b1—1+(01—a1—b1—2)2 (al’ L s )

n ( G20y 4 (a2)a(b2)s

Cg—ag—bg—l (Cg—ag—b2—2)2

(2.5) (1 +

) F(az, by;c2;1) < 2.

Proof. The proof of the first part is similar to that of Theorgm|2.2 and so it is omitted. In view
of Lemm& 2.8, we only need to show that

n—1 - 2 (a2)n(b2)n
Zn - 1)n_1 —i—;n —(02)n(1)n <1.
That is
- n 2(al)n+1(b1)n+1 - n 2(a2)n+1(b2)n+1

(2.6) HZ:O( S +nzzo< U <
But,

S n 2 (1) ng1(b1) g1

2, (2 D

_ i(n_'_ 1)( )n+1 n+1 22 al n+1 bl n+1 + Z bl n—i—l

e (c1)nt1(1 (c1)nta( (1)1

_ [( (a)o(br)2 3a1b1

1| F by;e1) —1
Cl—al—bl—2>2 cl—al—bl—1+ :| (al’ 1 €15 ) ’

J. Inequal. Pure and Appl. Mathb(4) Art. 99, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 OM P. AHUJA AND H. SILVERMAN

and
f: (n+ 1)2((12)n+1(52)n+1
o (02 n+1 1)n+1
> (a2)n+ b2 n+1 - a2 n+1 b2 n+1
= +
Z (C2)n+1 ; 02 n+1 )
(az)2(b2)2 azbs
- F by:co: 1) — 1.
[(cz—aQ—b1—2)2+01—a1—b1—1 (027 2; C2; )

Thus, [2.6) is equivalent to
(a1)2(61)2 I 3a1b + 1) 1

(Cl—al—bl—2)g cl—al—bl—l
+ F(agz, ba; co; 1) ( (az)a(ba)e + aaby ) <1

(Cg—ag—b2—2)2 Cz—ag—bQ—l
which is true because of the hypothesis. O

F(ay,b1;¢151) (

Denote bysS%,;; and Ky, respectively, the subclasses®f and Ky consisting of functions
f = h + g so thath andg are of the form

(2.7) h(z) =2z — ZAnz”, g(z) = Zan", A,>0,B,>0, B <1.

Lemma 2.5([4),[1Q]). Letf = h + g be given by[(2]7). Then
(i) f € Shy & ZnAn—l—ZnB <1,

n= 1

(it) f € Kry < Z n?A,+ Z n’B, < 1.

n=2 n=1

Theorem 2.6.Leta,;,b; >0, ¢c; > a; +b; + 1,for j = 1,2andasbs < co. If

(2.8) Gi(z) =z (2 - ‘bl?(z)) + ¢o(2)

then
(1) Gi € Sy <(.2) holds
(1) Gy € Kgy <(2.5) holds.

Proof. (i) We observe that
(a1)n l(bl)n 1 CL2 (b2>
Gi(z) =2z — ——" 4+ —z”,

' nZ:; (¢)n-1(1)n—1 Z (c2)n(1)n
andSgy; C Sy. Inview of Theorenj 2]2, we only need to show the necessary conditiai,for
to be inS,. If Gy € Sky, thenG, satisfies the inequality in Lemnpa 2.5(i) and the result in
(i) follows from Lemmg 2.5(i). The proof of (i) is similar becausg;; C Ky , and by using
Lemmd 2.5(ii) and Theorem 2.4. O
Theorem 2.7.Leta;,b; > 0, ¢; > a; +b; + 1, for j = 1,2andayzb; < c,. A necessary and
sufficient condition such thg (¢, + ¢o) € Sk for f € Sp, is that
(29) F(al,b1;01;1)+F(ag,bQ;Cg;l) S 3,
where¢,, ¢, are as defined, respectively, by (1.7) and](1.8).
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Proof. Let f = h + g € S}, whereh andg are given by[(2]7). Then
(f¥(d1 + @2)) (2) = h(2) * $1(2) + g(2) * ¢a(2)

&1nlbln1 b2 n
— _Z +ZC .

! (c1)n—1(1 — 2)

In view of Lemmd 2.5(i), we need to prove théit(¢, + ¢2) € Sg, if and only if
& (a1)n—1(b1)n—1 & (a2)n(b2)n

2.10 A, + -———B,<1.

(2.10) 2 e At 2 e,

As an application of Lemnia 2.5(i), we have

1 L
(Al < = |Bal <
n

Therefore, the left side of (2.]L0) is bounded above by
(@)1 (0)n-1 | o (a2)n(b2)n
+ ———— = F(a1,b1;¢c1;1) + Fag, ba;co; 1) — 2.
; (€0)n-1(Ln—1 2 (oD, Cem b+ Flaa baiexil)

The last expression is bounded above by 1 if and only if (2.9) is satisfied. This p-s (2.10)
and results follow.

n=1

Theorem 2.8.1f a;,b; > 0 andc; > a; + b; for 5 = 1,2, then a sufficient condition for a
function

GQ(Z) :/0 F(al,bl;cl;t)dt—l—/o [F <a2,b2;02;t> — 1]dt

to be inSy; is that
F(ay,by;¢151) + F(ag, by; ca;1) < 3.

Proof. In view of Lemmg 2.]L, the function

GQ(Z>:Z+Z(CL(1>) 1 1 1zn+z a2 1 2 1z"
n=2

C1 n—l n 2 C2 n—1 )
isin Sy, if
= (al)n—l(bl)n—1 = (az)n—l(b2)n—1
n + n— - ————— < 1.
; (Cl)n—l(l)n ; (02)71—1(1)71
That is, if

Equivalently,G € S if
F(ay,bi;er; 1) + Fag, basea; 1) < 3.
0
Theorem 2.9.1f a;,b; > —1, ¢; > 0, a1b; <0, ap >0, by > 0,andc; > a;+b;+1,5 =1,2,
then

Ga(2) :/ F(al,bl;cl;t)dt—l—/ [F (ag, by; co;t) — 1]dt
0 0
isin Sy ifand only if F(aq, by;c1;1) — Fag, by; ;1) +1 > 0.
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Proof. Applying Lemmd 2.5(i) to

|a1b1| CL1+1 2 bl—f-]_ 9
Gy (2) =2z — - - 2" Lon,
242) Z o+ 1), (), Z B

it suffices to show that

|a151| Z (a1 +1), 5 (b1 +1),_, N in(GQ)n—l (b2),_4 <1
(c2) -
n=2

(1 +1),5 (1), 1 (1,

Or equivalently

SOl oy e <
01+1 w (D ’@151\ |a151’

n=0 TL

But, this is equivalent to

01— (a1),, (b1) )., e
arby Z (e, (1), |a1b1| Z (1), = Jaubi|
That is,
F(a1,b1;¢151) = F (ag, by; c;1) > —1.
This completes the proof of the theorem. O

Remark 2.10. Comparable results to Theorems|2.7) 2.8] 2.9 for harmonic convex functions
may also be obtained. The proofs and results are similar and hence are omitted.

In particular, the results parallel to Theorgmg P.2][2.4, 2.6 fo 2.9 may also be obtained for the
incomplete beta functiop(a, c; z) as defined by (1]6). If

then

wheneveh, =1, by = 1.
Note that
(1) = F(ay, 1;¢051) =

C1 a2
andyy (1) = F(as, 1;¢9;1) — 1 = —————.
(Cl—al) ¢2< ) ( 2 2 ) (02_(12)

As an illustration, we close this section with the incomplete beta function analog to some of
the earlier results. o
Theorem. If a; > 0andc; > a; +2for j = 1,2, then a sufficient condition fap; + v,
to be harmonic univalent ih with ¢, + ¢, € S3; is

c1(cp —2) a3

(cr—ar)(c1—a1—2)  (c2—az)(c2—ag —2) <2
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Theorem. If a; > 0andc; > a; + 3 for j = 1,2, then a sufficient condition fap, + v,
to be harmonic univalent itk with ¢, + 1, € Ky is

a1 3a 2a; ]
1+ +
(c1 —aq) co—a;—2 (¢ —a;—3),
" as [ as 4 2(az)s <9
(CQ — (12) Cy — Qg — 2 (CQ — a9 — 3)2

Theorem. A necessary and sufficient condition such tha, + ;) € Siy, for f € Sky

is that
C1 a2

+
(c1 —a1) = (ca —a2)
Theorem[2.9. If a; > -1, ¢ > 0, a1 < 0, a3 > 0, ¢; > a; +1forj = 1,2, and
cj>aj—|—bj+1,j:1,2,then

/@(@1,Cl;t)dt+/ [90(@2702;15)_1]‘#
0 0

<1

is in S5, if and only if
c—1 S Qs

Cl—(ll—l_Cz—ag—l'

2.1. Positive Order. We say thatf of the form [1.1) is harmonic starlike of order 0 < a <

Lfor z| = rif & (arg f(re")) >, |z| = r. Denote bySy,(a)and Sy, () the subclasses

of Sy,and Sy, respectively, that are starlike of order Also, denote by («) and K gy («)

the subclasses df yand K iy, respectively, that are convex of orderMost of our results can

also be rewritten for functions of positive order by using similar techniques. For instance, using
the results in[[4] we have the following:

Theorem 2.11.1f a;,b; > 0 andc; > a; + 1, azby < ¢y for j = 1,2, theng, + ¢ is harmonic
univalent inA with ¢; + ¢, € Si(a), 0 < a < 1if

Clel
1— F bi:cp:1
( a+cl—a1—b1—1) (CLL 15 C1; )

a2b2
F by:co: 1) < 2(1 — ).
+(&+62—a2—b2—1) (CZQ, 2, C2; )_ ( CY)
REFERENCES

[1] J. CLUNIE AND T. SHEIL-SMALL, Harmonic univalent functiong\nn. Acad. Aci., Fenn. Sek.
I. Math., 9 (1984), 3-25.

[2] B.C. CARLSONAND D.B. SHAFFER, Starlike and prestarlike hypergeometric functi&haM J.
Math. Anal.,15(1984), 737-745.

[3] L. DE BRANGES, A proof of the Bieberbach conjectufgta Math.,154(1985), 137-152.

[4] J.M. JAHANGIRI, Harmonic functions starlike in the unit disk, Math. Anal. Appl 235(1999),
470-477.

[5] J.M.JAHANGIRI, Coefficient bounds and univalence criteria for harmonic functions with negative
coefficientsAnn. Univ. Mariae Curie — Sklodowska SectA 52 (1998), 57-66.

[6] E. MERKESAND B.T. SCOTT, Starlike hypergeometric functiospc. American Math Socl2
(1961), 885-888.

J. Inequal. Pure and Appl. Mathb(4) Art. 99, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 Om P. AHUJA AND H. SILVERMAN

[7] S.S. MILLER AND P.T. MOCANU, Univalence of Gaussian and confluent hypergeometric func-
tions,Proc. Amer. Math. Soc1,10(2) (1990), 333-342.

[8] St. RUSCHEWEYHAND V. SINGH, On the order of starlikeness of hypergeometric functidns,
Math. Anal. Appl.113(1986), 1-11

[9] H. SILVERMAN, Starlike and convexity properties for hypergeometric functiahgviath. Anal.
Appl.,172(1993), 574-581.

[10] H. SILVERMAN AND E.M. SILVIA, Subclasses of harmonic univalent functioNew Zealand J.
Math., 28 (1999), 275-284.

[11] H.M. SRIVASTAVA AND H.L. MANOCHA, A Treatise on Generating Functiangllis Horwood
Limited and John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1984.

J. Inequal. Pure and Appl. Mathb(4) Art. 99, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	2.1. Positive Order

	References

