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ABSTRACT. We deal with anisotropic integral functionafg f (=, Du(x))dz defined on vector
valued mappings : 2 c R® — R™. We show that a suitable "monotonicity" inequality, on the
density f, guarantees global pointwise bounds for minimizers
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1. INTRODUCTION

We consider the integral functional
(1.1) F(u):/f(x,Du(x))dx
Q

whereu : Q c R* — RY and( is a bounded open set. Wheéh = 1 we are dealing with
scalar functions : 2 — RR; on the contrary, vector valued mappings) — R" appear when

N > 2. Local and global pointwise bounds for scalar minimizers of|(1.1) have been proved in
[2], [7], [5], [4]. A model functional for these results is

n 5
(1.2) /(Z aij(x)Dju(x)Diu(x)> dz,
2 \4j=1
ISSN (electronic): 1443-5756

(© 2006 Victoria University. All rights reserved.
099-06


http://jipam.vu.edu.au/
mailto:leonetti@univaq.it
http://www.ams.org/msc/

2 FRANCESCOLEONETTI AND PIER VINCENZO PETRICCA

where coefficients;; are measurable, bounded and elliptic. Previous results for scalar minimiz-
ers are no longer true in the vector valued cAse 2 as De Giorgi’s counterexample shows,
[3]. Some years later, attention has been paid to anisotropic functionals whose model is

(1.3) /Q (IDyu(z) " + | Dyu(z)[P* + - - - + | Dpu(z) ) da,

where each component;u of the gradienDu = (Dyu, Dy, . .., D,u) may have a (possibly)
different exponenp;: this seems useful when dealing with some reinforced materfials, [9]; see
also [6, Example 1.7.1, page 169]. In the framework of anisotropic functionals, global point-
wise bounds have been proved for scalar minimizerslin [1] l@nd [8]. If no additional conditions
are assumed, these bounds are false in the vectorial case, as the above mentioned counterex-
ample shows, [|3]. The aim of this paper is to present a “monotonicity” assumption ensuring
boundedness of vector valued minimizers. In order to do that, we recall tHatc R* — RY
thus Du(z) is a matrix withNV rows andn columns; the density(z, A) in (1.1) is assumed to
be measurable with respectipcontinuous with respect td and f : Q x RV*" — [0, +00).
Every matrixA = {A%} € R¥* will have N rows A, ..., AN andn columnsA;, ..., A,. In
this paper we will show that the following “monotonicity” inequality guarantees global point-
wise bounds for vector valued minimizers pof (1.1):

- . pi
(1.4) fla, A+ iy A - Al < £, ) + M(2)

i=1

for every pair of matrices, A € R¥*" such that there exists a rowwith A° = 0 and for
every remaining rove # 3 we haveA® = A“. In ),u,pl, ..., pp are positive constants with
pi > 1landM : Q — [0,4o00) with M € L"(Q2), r > 1. If we keep in mind thatd = Du(z),
then the left hand side of (1.4) shows," , |A; — D,u(z)|", thus each compone,u of the
gradientDu may have a possibly different exponentso we are in the anisotropic framework:
-1
u € WHH(Q RY) with D;u € LPi(Q,RY). In this case the harmonic mear= (% S T})
comes into play. In Sectigrj 2 we will prove the following

Theorem 1.1. We consider the functional (1.1) under the “monotonicity” inequality](1.4) with

(1.5) b (1 - 1) >1
P T
wherep* is the Sobolev exponent pf< n. We consider = (u', ..., u") € WH(Q RY),
with D;u € LPi(Q,RY) Vi € {1,...,n}, such that
F(u) < 400
and
(1.6) F(u) < F(v)

for everyv € u + Wy (Q,RY) with Diw € LPi(Q,RN) Vi € {1,...,n}. Then, for every
component.’, we have

1.7) infu’ — ¢, < uﬁ(q:) < supu? + ¢,
o0 a0

for almost every: € 2, where

- <”M||L”"(Q)>
Ck=c| ——=
"

c=c(n,p1,...,pn) > 0and|Q] is the Lebesgue measure(of

3=

[0 515 -0 5 [0-)5 ]

J. Inequal. Pure and Appl. Math?(3) Art. 88, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MINIMIZERS OF ANISOTROPICFUNCTIONALS 3

A model densityf for the “monotonicity” inequality[(1)4) is given in the following.

Lemma 1.2. For everyi = 1,...,n, let us considep; € [2,4+00) anda; € (0, +00); we take
m: Q — [0,+00) andh : R — R with —co < infg h. Let us consider : Q x R™" — R
defined as follows:
(1.8) flz, A) = Z a;|A;|P* + m(x)h(det A).

=1
Then the “monotonicity” inequality (I]4) holds true with= min; a; and M (z) = m(x)[h(0)—
infg h]. Moreover, ifh > 0, thenf > 0 too.

2. PROOFS

In order to prove Theorefn 1.1, we need the following

Lemma 2.1. Let us consider the functiondl (1.1) under the “monotonicity” assumpfiorj (1.4).
Then, for every = (v!, ..., o) € WH(Q,RY) with D;v € LPi(Q,RY) Vi € {1,...,n}, for
anyjs e {1,...,N}, forall t € R, it results that

@Y Fllu) +n / IDi(I54(0(x))) = Dyv(a)|Pde < F(v) + / M (x)da

{vP >t}
wherels, : RY — R” is defined as follows:
Vy=(y',....y") RV, Isu(y) = (I5,(v), -, I5,(v))
with
ye if a#p

(2.2) I5.(y) =

o y? At =min{y’ t} if a=4.
Proof. For everyv € WH(Q,RY), with D;v € LPi(Q,RY) Vi € {1,...,n}, it results that
Igi(v) € WHH(Q,RY); moreover

D;v® if a«#0
(2.3) Dﬂ&@»={ .

1{v5§t}Di’Uﬁ if = ﬁ,
wherel  is the characteristic function of the g8t thatis,1z(z) = 1if z € Bandlg(z) = 0if
x ¢ B. ThereforeD;(I5,(v)) € LPi(Q,RY) Vi € {1,...,n}. On{z € Q : v?(x) > t} we have
D(%(U)) = 0 and, fora # 3, D(I§,(v)) = Dv®; so we can appl4) with = D(15,(v))
andA = Dv; we obtain

(24)  flz, D(Is4(v(x)))) + MZ | Di(Is4(v(x))) — Div()[" < f(z, Dv(x)) + M(z)

forz € {v° > t}. On{z € Q:vP(x) <t} D(I54(v)) = Dv, thus

(2.5) f(x, D(Ig4(v(x)))) + p Z | Di(1s4(v(x))) = Dyv(2)[* = f(z, Du(z))

for z € {v” < t}. From [2.4) and (2]5) we have
F(, D(Is4(0(x)))) + Y |1 DilLg(v(x))) — Dyo(a)

i=1

Pi < f(x, Dv(x)) + M($)1{uﬁ>t}(x)
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forz € Q. If 2 — f(z,Dv(x)) € LY(Q), thenz — f(z, D(I5,(v(x)))) € L) too and,
integrating the last inequality with respectitpwe get[(2.11). When — f(x, Dv(z)) ¢ L*(%),
we haveF(v) = +o0 and [2.1) holds true. This ends the proof of Lenjma 2.1. O

Now we are ready to prove Theorém]|1.1.

Proof. Let us fix 3 € {1,...,N}. If supyou® = +oo then the right hand side of (1.7) is
satisfied. Thus we assumep,, v’ < t, < t < +oo and we note that under this assumption
Ii(u) € u+ Wy (Q,RYN) andD;(I5,4(u)) € LP(Q,RN) Vi € {1,...,n} since

u’ At =min {u” t} = v’ — [max {u” —t,0}] = v’ — [(u’ — 1) V0],

where(u® — ) v 0 € Wy' () andD;((u” — ) v 0) = Diullyenpy € LP(Q) Vi € {1,...,n}.
From {1.6) and[(2]1) it results that

F(u) < F(lgi(u))

<Fw - [ DTsetu()) - D) + /{ L M
that is
2.6 D;(Ig:(u(x))) — Dyu(x)|Pide < M(x)dzx.
) w3 [ Pl - Pt < [ o

If we defines = (u” —t) v 0, then we can writg (2]6) as follows:

2.7) DS /Q Did(x)

If r < 400, we apply Holder’s inequality tgf{uﬁ>t} M (z)dx and we obtain

Pidy < / M (z)dzx.
{uP>t}

ralfu? > 10,

| M@de<|m
{uf >t}
If » = +o00, then
_1
[ M@ < Mol > ] = [ o> 107
uf” >t

In both cases, fronj (2.7) it results that

n M ) 1

i=1 /9 "
in particular,vi € {1,...,n}

Ml|zr )
@ It
from which 1 |
g M|z N
(/Q|Dz¢(x) pidx) = {HHTL(Q)HUB > t}|(1r)}

and finally

=

(2.8) [lj (/Q Ds6(x) pidx) ] " . {IIM|LLT(Q) T t}|(1_i)}
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We apply the anisotropic imbedding theorém! [10] and we (2.8):

(2.9) og(é?xﬁwug—ﬂﬁm>;

= |16l 7 ()
<e H( / |Did() d:c) ]
[i=1 \/
[ M T 1 %
<o [IMlere) (“)I{uﬁ>t}|(l”)} :

wherec = ¢(n, p1,...,pa) > 0. If [ M||1-@) = 0, then from [(2.D) it results that® < ¢ almost
everywhere irf2 and we are done. IfM| ;) > 0, then forT" > ¢t we have

(2.10) @—Qfmﬁ>TH:L?7$T—ﬂmm
< WBlz) — )7 dx
N /{uﬁ>T} [ ( ) ]

IN

/ [u’(z) — 1] " dx
{uP>t}
and from [(2.9) and (2.10) we get

z
p

(2.11) {uf > T} <& (”M ”v<m>f“ - _1t)p* f > ()

I

for everyT,t with T > t > t,. We setx(t) = |{«” > t}| and we use[]7, Lemma 4.1, p. 93],
that we provide below for the convenience of the reader.

Lemma 2.2. Let x : [ty, +o0) — [0,+00) be decreasing. We assume that there exist €
(0,400) andb € (1,4o00) such that

k

(2.12) T>t>ty— x(T) < (x())"-
(T =t)e
Then it results that
1
(2.13) x(to+d) =0 where d= [k(x(to))blmlfbl)]
We use the previous Lemra P.2 and we have

(2.14) {u’ >to+d}| =0
that is
(2.15) u’ <ty+d

almost everywhere ife, where

M|
oo (Dl
7
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In order to get the right hand side 6f (IL.7), we contfal® > ¢,}| by means ofQ| and we take
a sequencé(to)m }m With (¢),, — sups u”. Let us show how we obtain the left hand side of
(L.7): we apply the right hand side ¢f (L.7)ta:. This ends the proof of Theorgm [L.1. O

Now we are going to prove Lemma 1.2.
Proof. We assume that, A € R™" with A? = 0 andA® = A* for a # (. Then

(2.16) D AP = AT+ AP
a a#fB
= A7 — AP+ ) AP
a#f3

= Yol — A4 Y JAe

SO

(2.17) |Ai> = A — A? + | A2

Sincep; > 2, the previous equality gives

(2.18) | AP > | A — AP+ | AP

Moreover

(2.19) h(det A) > i%fh = h(0) — [A(0) — i%f h] = h(det A) — [h(0) — i%f h].

Now we are able to estimayf{z, A) and f(z, A) by means of| (2.18) and (2.119) as follows:

(2.20) fla, A) + (minay) Y |4 — A
J =1
< Z ai‘Ai
=1
< Z a;|A;
=1

= f(w, A) + m()[h(0) — inf b

thus the “monotonicity” inequality (1(4) holds true with= min; a; andM (z) = m(z)[h(0) —
infg h]. This ends the proof of Lemma 1.2. O

pi

Pi 4 m(z)h(det A) + Z ai|A; — A,
i=1

P+ m(x)h(det A) + m(z)[h(0) — inf A]
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