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ABSTRACT. We establish some inequalities on th&-Green functionG on boundedC*!-
domain. We use these inequalities to prove the existence dfithe— ;1)-Green functionG,,

and its comparability t@-, wherey is in some general class of signed Radon measures. Finally
we prove that the choice of this class is essentially optimal.
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1. INTRODUCTION

The first aim of this paper is to prove some inequalities on the Green funGtiohl A on
boundedC!!-domain{) in R*, n > 3, whereA is the Laplacian operator. In particular we
give an alternative and shorter proof of th&-Theorem established inl[9] using long and sharp
discussions. Th8G-Theorem includes the usual one provedinl [11], [4] and [3], which was
very useful to obtain some potential theoretic results. The second is to prove a comparison
theorem between the Green functiGrand the Green functio&, of the Schrodinger operator
%A — . on €2, wherey is allowed to be in some class of signed Radon measures. In contrast
to [9], there is no restriction on the sign pfin this work. This comparison theorem is very
important in the sense that it enables us to deduce some potential theoretic res}zﬁs#qx
which are known to hold foé—A. This is stated at the end of the paper. Moreover our result
covers the case of signed Radon measures with bounded Newtonian potentials i.e,

1
sup [ laldy) < o
we0 Jo v =yl
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2 LOTFI RIAHI

The Schrodinger operaténA — f, with f belonging to the Kato clask’°c which is studied by
several authors (see! [1],![3],/[4],.]11]) is just the special case whédras the density with
respect to the Lebesgue measure. In particular our results cover the ones proved by Zhao [11].
Finally we show that the choice of this class is essentially optimal.

Our paper is organized as follows.

In Sectior| 2, we give some notations and recall some known results. In Sgction 3, we prove
some inequalities on the Green function%(zﬁi on bounded”!'-domain. A new and a shorter
proof of the3G-Theorem established inl[9] is given. In Sectidn 4, we introduce a general class
of signed Radon measures Qrdenoted byC((2) that will be considered in this work. We give
some examples and we study some properties of this class. In §gction 5, we prove a comparison
theorem between the Green functions of and the Schrédinger operath — 4, wherey is in
the clasgC(£2). We also show that whemis nonnegative the conditign € () is necessary
for the comparison theorem to hold.

Throughout the paper the lettérwill denote a generic positive constant which may vary in
value from line to line.

2. PRELIMINARIES AND NOTATIONS

Throughout the pape® denotes a bounded'*-domain inR™, n > 3. This means that for
eachz € 00 there exists a balB(z, Ry), Ry, > 0 and a coordinate system Bf* such that in
these coordinates,

B(z,Ry) NQ = B(z,Ro) N {(2,2,) /2’ € R* ™, z, > f(a)},

and
B(z, Ry) N0 = B(z, Ry) N {(2', f(z')) /2" € R" 1},

wheref is aC*!-function.

A denotes the Laplacian operator&h and( its Green function o). For a signed Radon
measureg: on 2, we denote by~ , the (%A — u) -Green function off2, when it exists.

Forz € Qletd(x) = d(x,09), the distance from to the boundary of2. We denote byl(€)
the diameter of).

Since is a bounded’!-!'-domain, then it has the following geometrical property:

There existsy, > 0 depending only orf2 such that for any: € 02 and0 < r < ry
there exist two balls3? () and B:(r) of radiusr such thatB3(r) c Q, Bi(r) c R\ Q and
{z} = 0B5(r) N oBj(r).

We recall the following interesting estimates on the Green functiarhich are due to Griter
and Widmanl[5], Zhad [11] and Huebér [6].

Theorem 2.1. There exists a constant > 0 depending on the diameter Qf on the curvature
of 02 and on the dimension such that

C~ ! min (1, d(:z:)d(yQ)) L 5 < G(r,y) < Cmin (1, d(x)d(yz)) L 5
[z —yl* ) |z —y|"~ [z —yl* ) |z —yl"~

forall z, y € Q.

3. INEQUALITIES ON THE GREEN FUNCTION G

In this section we first give a new and a simple proof of e Theorem established inl[9].
We also derive other inequalities on the Green funciaihat will be used in the next sections.
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Theorem 3.1(3G-Theorem) There exists a constant = C'(£2,n) > 0 such that forz, y, z €
2, we have
d(z)

G(z,z) + ——=G(z,y)).

ﬂ%@G&w)<Cﬂ@)
d(y)

Glz,y) —  d)
Proof. The inequality of the theorem is equivalent to

1 1 1
3.1 ¢ T ) .
G4 w0 < \a0ey * maes
On the other hand, since far> 0,5 > 0,

ab ab
< mi b) <2
a+b—mmm’k‘a+b

)

then

d(x)d(y) d(x)d(y) d(x)d(y)
it <m0 (R S e
and hence, from Theoreém 2.1, we obtain

C'N(z,y) < G(z,y) < CN(z,y),

where

d(x)d(y)
N(z,y) = .
)y e — P + @)
Therefore|(3.1) is equivalent to
(3.2) |z —y|"*(|lz — y* +d(2)d(y)) < C(lz — y["*(|z — y* + d(2)d(y))
+ = 2" (|2 — 2 + d(2)d(2))).
Then, we shall prové (3.2). By symmetry we may assume|thatz| < |y — z|. We have
2 —y|" 7 < (Jo — 2+ [z —y))" 7
(3.3) < 2" -yt
and

| —yl* + d(2)d(y) < (Jo — 2| + |2 = y)* + (lz — 2] + d(2))d(y)

(3.4 <Alz =y + |z — yld(y) + d(2)d(y).
If |z —y| <d(z), then
(3.5) |z —yld(y) < d(z)d(y).

If |z —y| > d(z), then
|z —yld(y) < |z —yl(d(2) + |z —yl])

(3.6) < 2|Z—y\2.
From (3.4),[(3.b) and (3/6), we obtain
3.7) |z — y|* + d(x)d(y) < 6(]z —y|> + d(y)d(2)).

From (3.3) and[(3]7), we obtain
o —y"(Jo — yI* + d(z)d(y)) < 2"z —y[" (|2 — yl* + d(2)d(y))-
This proves|(3]2) withls' = 2"+1, O
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Lemma 3.2. There exists a constant = C'(§2,n) > 0 such that for allz, y € 2, we have

d(y) ¢

SV y) < ——

aa) Y = g
Proof. By Theorenj Z]1, we have

M T ———— min @ d(y)*
d@) Y < Ty (ﬂ@’m—yv>'

Putt = % > 0. From the inequalityz — y| > |d(y) — d(z)|, it follows
n(@ d(y)2>< ((y) d(y)? )
d(z)" [z —y[*) ~ d(z)” |d(y) — d(x)|?
= min
(7o)
Sincemin ( e 1) ) < 4, forallt > 0, then we obtain
d(y) 4C
—G(r,y) < ————.
aw) O S e
By symmetry we also have
d(x) 4C
—G(r,y) < ————.
ay) Y = ey
This ends the proof. O

The usuaBG-Theorem proved in [3,/4, 11] is well known under the following form which is
a simple consequence of Theorem 3.1 and Lemnja 3.2.

Corollary 3.3. There exists a constant = C'(Q2,n) > 0 such that forz, y, z € €2, we have

G(x,z)G(z,y)SC( 1 1 )

G(z,y) e

4. THE CLASS K (2)

Definition 4.1. Let i be a signed Radon measure@nWe say thaj: is in the clasdC(2) if it
satisfies
d(y)

=su —=G(x, dy) < 400,
ol =sup [ GRG0l

where|y| is the total variation ofi.

In the following we study some properties of the cl&g$2) and to this end we first need to
prove the following lemma.

Lemma4.1. For z, y € ), we have
If d(z)d(y) > |z — y|?, then

If d(z)d(y) < |z — y|?, then
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Proof. If d(x)d(y) > |x — y|?, then in view of the inequalityx — y| > |d(z) — d(y)|, we obtain
d(z)d(y) > |d(z) — d(y) [,
which implies
3d(x)d(y) = d(x)* +d(y)*,
and then
1
3dy) < d(z) < 3d(y)
If d(x)d(y) < |z — y/|?, then in view of the inequalityi(z) > d(y) — |z — y|, we obtain
d(y)(d(y) — |z —y|) < |z =yl
which gives
d(y)* < |z —y* +d(y)|z — y|
1 2

< (!x -yl + §d(y)) :

The last inequality yields
1

5d) < e —yl.

Similarly, we have
1
Sd(@) < e —y.
0]

The following proposition provides some interesting examples of measures in th&€ass
Proposition 4.2. For a € R, the measur%dy is in the classK () if and only ifa < 2.

Proof. We first assumer < 2 and we will prove that

d(y) 1
sup/Q MG(w,y)Wdy < +00.

€

By Theoren 2.1, we have

d(y) 1 , 1 1 d(y)*
@) g [ GG gt < Csup fLwin (G )

On the other hand

fmin (d<x>1d<y>’ = y|2> . (—y);r;:dy

QNn(d(z)d(y)=|z—yl?) QN(d(z)d(y)<|lz—yl?)
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We estimatd;. From Lemma 4]1, we have

;o / d(y)' ™
L= n—2
QN(d(z)d(y)>|z—y|?) d(%)‘l’ - y‘

1
< Cd(x)~ / =y
je—yl<v3d(z) 1T — Y]
V3d(x)
< C’d(x)_a/ rdr
0

< Od(z)*™™
4.3) < Cd(Q)*

Now we estimatd,. From Lemma 4]1, we have

d 2—«
Qn(d(@)d(y)<|z—yl?) 1T — Y]
1
< 92-a / b
|z —ynte

Q)
< 227%, 4 / ri=%dr
0

22fozw 1
4.4 =2 ()
wherew,,_; is the area of the unit sphefg_; in R™.

Combining [4.1),[(4]2)[(4]3) anfl (4.4), we obtain
d(y) 1
2 ), D T

Now we assume: > 2 and we will prove that

dy

< 0d(2)*™ < +oo0.

d(y) 1
sup | ——=<G(z, = +00.
Q/Q a0 "V )
We first remark that whed(z) < @u —y|, we have
Vb +1
d(y) < d(x) + [z —y| < |z —y|

2
and theni(z)d(y) < |z — y|*>. By Theorenj 21, we have

dy) L “Lsu min L L d(y)%o‘
s [ G50 gty = 0 s | <d<x>d<y>’|x—y|2) g

d 2—a
(4.5) >C! sup/ W) ~d
2 Jon(@ <Lt oy |7 = Yl

Let z, € 02 and putz, the center ofB{°(ry). This meansB;®(ry) = B(x,19) C . For
x €]29, o), We have

ly — zf < [y — zof + d(2),

{yeD:d(x) i \/_\y—zo|} {yeD:d(:c)g 2_113,—3;;}.

and

S
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Hence forz €|z, 2|, we have

2—a o 2—a
QN(d(z) <Y=L lz—y)|) [z — | QN(d(z) <375 |[y—z0) (ly — 20| + d(z))

From (4.5) and[(4]6), we obtain

d(y) 1
s [ S50E g0

1
> C’_l/ ——dy
Q |y _ 20|n+o¢—2
1
Z 0_1/ [Tl
B0(rg) |y — 20|

1
= C_l/ ——dy
ly—zo|<ro |y - Z0|n+a72

1
(4.7) — oL -y,
ly|<ro |y - §|n+a—2

Where§ =2y — Tg with |§| =T1y.
We take a spherical coordinate systéenv,,...,#,_1) such that = (|¢|,0,...,0). Then,
we have

1 (sin ;)" 2
(4.8) / M=t / / : e dbdr.
lyl<ro 1Y — (r24+1r¢ —2rrgcosfy) 2

By making the change of variablés= tan , We obtain

/7r (SIH 91) N _ d@l
0o (r24r2— el
r2 41§ — 2rrocosfy)

+o0 n—2(1 2\ 257
:2n—1/ t ( +t> 2 dt
o ((

P+ o)+ (rg — r)2) % -
911 (g 4 )l [T sn2 (1 + (’7:8—;:)232> o
= nr+—o d
(ro — )t /0 (s + 1)1
k
>

= (ro—r)*

S

wherek = k(rg,a,n) > 0.
This implies

0 n—2 0 n—1
(4 9) / n— 1/ SlIl 1) = do,dr > k/ r—ldr = 1o0.
(r2+r¢ —2rrgcosty) = ! o (ro—r)2

From [4.7),[(4.B) and (4]9), we obtain

d(y) 1
su —=G(x,
w [ G0
This ends the proof. O

= +00.

Now we compare the clags(f2) with the class of signed Radon measures with bounded
Newtonian potentials. A signed Radon measurge said to be of bounded Newtonian potential

if sup,eq fo moype Hl(dy) < +oo.

Proposition 4.3. The classkC(€2) properly contains the class of signed Radon measures with
bounded Newtonian potentials.
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Proof. From definitions and Lemnja 3.2, it is clear that the class of signed Radon measures with
bounded Newtonian potentials is containediff?). In the sequel we will prove that fdr< «,

/Qdé)a -

R

su = Q.

xeg ’[E _ ’n72 d )a Y

In particular forl < a < 2, dy does not define a bounded Newtonian potential and by

Proposmo, we know th%Ey—dy € K(Q).

Without loss of generality we assume tllat 0f2. We know that there exist8, > 0 such
that

and then

B(0, Ry) NQ = B(0, Ry) N {(a',z,) /2 € R" x,, > f(2)},
and
B(0, Ry) N0 = B(0, Ry) N {(2/, f(2')) /2" € R*'},

wheref is aCl!-function.
By the continuity off, there existg, € |0, £2[ such that for|y/| < p, we havel f(y')| < £

Hence for ally = (v, y,) such thaty’| < pp and0 < y, — f(y') < £, we have(y’, f(y')) €
oY andy € B(0, Ry) N2 which gived(y) <y, — f(¥/').

Using these observations we have

1 1
d d
/Qd@) y—/mBORO>d) Y

1
—dyndy’
A/ "1<po /0<yn f(y RO Yn — f(y/))a

4
:/ dy'/ —adr = +00.
ly'|<po o T

We next prove that the Kato clags!*c is properly contained ikC(£2). For the reader’s
convenience we recall the definition of the Kato class.

Definition 4.2. A Borel measurable functiofi on Q2 is in the Kato clasg<! if it satisfies

lim sup/ Mdy =0.
(I

-2
=0 2eQ z—y|<r)NQ |£L’ - yln

0

Proposition 4.4. The classC(Q2) properly contains the Kato clags!o.
Proof. Let f be in K'c. We have

lim sup/ Ll)lgdy = 0.
(

=0 2eQ T—y|<r)NQ |(L’ -
Then, there exists > 0 such that
(4.10) sup/ Mdy <1
z€Q J (|lz—y|<r)NQ |£L' - y|n

This yields

sup [ |y <
z€Q J (|Jz—y|<r)NQ
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On the other hand, sindeis a compact subset then there are. .. , v, € Q, p € N* such that
Q = UY_, B(z;,7) N Q. Hence the last inequality gives

/ F)ldy < pr .
Q

It follows that

(4.11) supA Mdy <p.

z€Q J (|z—y|>r)NQ |ZE - y|n—2
From (4.10) and (4.11) we obtain
sup/ %dyép—i—l < 4o00.
ve0 Jo |7 —y|"

This means thaf (y)dy defines a bounded Newtonian potential and the result holds from Propo-
sition[4.3. O

5. THE GREEN FUNCTION FOR 1A —

In this section we prove that when € K(€2) the Green functiorG,, of the Schrodinger
operator%A — p exists and it is comparable t&. We first prove the following result.

Theorem 5.1. There exists a constait = C(2,n) > 0 such that for allx € K(©2) and all
nonnegative superharmonic functiaron 2, we have

/Q G, ) h()lial(dy) < Clulh(z),

forall z € Q.
Proof. By the3G-Theorem, we have

(5.1) / G, )Gy, 2)\ul(dy) < 20111z, 2),

forall z, z € Q.
Now let h be a nonnegative superharmonic function{gnthere is an increasing sequence
(hn)n Of nOoNnegative measurable functions(@such that

h(z) = sup/QG(x,z)hn(z)dz,

n

for all z € Q.
From (5.1), we have

/Q / G, 9) Gy, 2) 1| (dy)ha()dz < 20 |ul / G, 2)ha(2)dz,

forall x € Q.
By the Fubini’'s theorem, we obtain

/Q Gz, y) / Gy, 2)ha(2)dzul(dy) < 2C|ul] / G, 2)ha(2)d,

for all z € Q.
Whenn tends to+-oco, we obtain

/Q G y)h(y)|ul(dy) < 2 llh(x),

for all z € Q. O
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Corollary 5.2. Lety € K(€2). Then

mmLGmwmww<+m

e

Let . be a signed Radon measure in the cld§8), i.e. ||u|| < +o00. The Jordan decomposi-
tion into positive and negative parts says that ©* — = and|u| = pt + p~. From Corollary
[5.7, the functions

v [ Gyt (@) ande — [ Glag)u(dy)
Q Q

are two continuous potentials 6y and the real continuous function

x%AG@wM@)

corresponds to the difference of these two potentials. Hence from the perturbed theory studied
in [2], it follows that there exists a Green functi6, for the Schrodinger operatéﬂ — pon
Q) satisfying the resolvent equation:

G@w=%@m+AG@QQQMW@,

forall x, y € Q.
Our main result is the following.

Theorem 5.3. Assume that € K(Q2) with ||u|| sufficiently small. Then the Green functidris
andG,, are comparable, i.e. there is a constalt= C'(2, n, ||©||) > 0 such that

C7'G <G, <CG.

Proof. We have the resolvent equation:

G@@=®@@+LG@@@@@@@
=Gz, y) + G *Gy(x,y).

Then

G,=G—-GxG,.
By iteration we obtain
(5.2) G,=G+> (-G,

m>1
where
G a,y) = G+ Glay) = [ Gla2)Gle)dn(a)
Q

and

G*m+1 — G*m % G
From the3G-Theorem, we have

|
G@w%éG@JWWWWMM)

a(:) a(:)
sc(éagaaaww@+éaaa@wmwa)
< 20 |ul.
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In particular, we have
|G*| < 20| |pl|G.

By recurrence, we obtain
(5.3) |G < 20 |ul)mG.
Whenl||| is sufficiently small so thatC'|||| < 3, we obtain, from[(5]2) and (5.3),

G, =Gl <> _0|ulh"a

m>1
20|l
1=2Cull ™
which yields
1—4C||u||) 1
— |GG, < ———G.
<1—20HM| T =20l

O

Recall that when is a nonnegative Radon measure, we know by [8] that the Green function
G, of %A — 1 exists and satisfies the resolvent equation:

mmw:@@m+/emw@@wm@,

Q

forall x, y € Q.
Next we show that in this case, the conditiere /C((2) is necessary and sufficient for the
comparability result.

Lemma 5.4. There exists a constant = C'(€2,n) > 0 such that

C’_ld(x) < / G(z,y)dy < Cd(x),
Q
forall z € Q.

Proof. From Theorem 2]1, we have

C . d(x)d(y))
G(r,y) < ————min [ 1, ——~ | |
o) < =i (17258
forall x, y € Q.
If d(y) < 2|z — vy, then
(5.4) Glz,y) < oo 2
|z =y
If d(y) > 2|z — y|, thend(z) > d(y) — |x — y| > |x — y|, which implies
C d(x)
5.5 Glz,y) < — <28
9 R T
Combining [5.4) and (55), we obtain
d(x)
<2
G(x’y) — C‘x_y‘nilﬂ

forall x, y € Q.
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This yields
1
G(z,y)dy < 2Cd(z /—dy
J et <204 [
< QCd(x)/ !

n—1 Yy
0<|z—y|<d() |z —y|

()
= 2Cw,_1d(x) / dr
0

From Theorerh 2]1, we also have

G, (1, d(x)d(y)> < G(x,y),

|z — y|n2 |z —y|?

forall x, y € Q.
This implies
_d(z)d(y) <

forall z, y € Q.
Hence

C-Ld(Q)"d(x) /

Q

d(y)dy < / Gz, y)dy,

Q
which means

OQd(.T) S/G(ZB,y)d%

Q
for all z € Q. O

Theorem 5.5. Let i« be a nonnegative Radon measure. Then, the Green furGfiaf ; A — 1
on (2 is comparable td~ if and only ifu € ().

Proof. We have the integral equation:

Gl,y) = Gulz,y) + /Q G, 2)Goulz, y)du(2),

forall x, y € Q.

We first assume thdt,, andG are comparable which means that there exists a corstant
such that

C'G<G,<G.
Hence
| G216 Gmau) < (€ = D6(ay)

forall z, y € Q.

This implies

/Q/QG(x, 2)G(z,y)du(z)dy < (C — 1)/{2G(x,y)dy.

forall x € Q.
Using the Fubini’s theorem, it follows that

/Q Gz, 2) / Gz, y)dydu(z) < (C — 1) / G, y)dy.

for all z € Q.
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From Lemma 5.4, we deduce that

/Qd(z)G(x,z)d,u(z) < C'd(x),

for all z € Q.
This means that
su /MG(I' 2)du(z) < C'
xeg Q d(I) 7 : B 7
and therp € K(92).
Now let i € K(£2), which meansﬂuH < +o0. By Theore the Green functigh_.

of the Schrédinger operatdy — scu I is comparable t@-. This means that there exisis> 1
such that

By Theorem 1 in[[10], it follows that
C—8Cullz <G, <@,
which ends the proof. O

Remark 5.6. In view of the paper|7], our results hold also when we replace the Laplace oper-
ator by an elliptic operator

0
L= Z Y Qg0 ; ax] ; 8:131

t,j=1
which is uniformly elliptic with bounded Hoélder continuous coefficiemts, b
Remark 5.7. The comparison theorem serves as a main tool to obtain some potential-theoretic
results. For example it implies the equivalenceg A — 11)-potential and, A-potential of any
measure with support contained(nand then the equivalence 0fA — 1)-capacity and A-
capacity of any set if2. These equivalences say that the fine topology, polar sets, etc. are the
same for; A and;A — pi. Following the argument i [7], the comparison theorem also implies
the equivalence of; A — ;1)-harmonic measure and\-harmonic measure o#. This gives
rise to a boundary Harnack principle and a comparison theorem for nonne(g;\ﬁve ,u)-
solutions and nonnegative\-solutions vanishing continuously on a partst (see [4]).
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