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ABSTRACT. In this paper, itis shown that a refinement of Holder’s inequality can be established
using the positive definiteness of the Gram matrix. As applications, some improvements on
Minkowski’s inequality, Fan Ky’s inequality and Hardy’s inequality are given.
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1. INTRODUCTION

For convenience, we need to introduce the following notations which will be frequently used
throughout the paper:

[o.¢] o ls
(" 6°) =Y apby, all, = (D _an ] llall, = llall,
n=1 n=1

)= [ e = ([T @) 1=,
and
Si(a,y) = (a2, y) [lafl, ",
wherea = (a1, as,...) are sequences of real numbefs; [0,00) — [0, 00) are measurable
functions andch andy are elements of an inner product spdcef real sequences.
Leta = (a1, aq,...)andb = (b1, b, . ..) be sequences of real number®h Then Holder’s
inequality can be written in the form

(1.1) (a,b) < [lall, [|bl, -
The equality in[(1]1) holds if and only iff = kb!, i =1,2,..., wherek is a constant.
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This inequality is important in function theory, functional analysis, Fourier analysis and ana-
lytic number theory, etc. However, there are drawbacks in this inequality. For example, let

a:(al,a27...,an,0,...70), b:(0,0,...,bn+1,bn+2,...,bgn), a,bGRQ".

Ifweleta; =b; =1,i=1,2,...,n;j =n+1,n+2,...,2n, and substitute them intp (1.1),
then we havé < n. In this case, Holder’s inequality is meaningless.

In the present paper we establish a new inequality that improves Hélder’s inequality and
remedies the defect pointed out above. At the same time, some significant refinements for
a number of the classical inequalities can be established. As space is limited, only several
applications of the new inequality are given.

2. MAIN RESULTS

Let « and 3 be elements of an inner product spdceThen the inner product af andj is
denoted by(«, 5) and the norm ofv is given by||a|| = 1/(«, «). In our previous papers ([1],
[2]), the following result has been obtained by means of the positive definiteness of the Gram
matrix.

Lemma 2.1. Leta, § and~ be three arbitrary vectors of. If |v|| = 1, then

(2.1) (e, O)FF < llal” 1817 = (lell 1z = 18]l ly1)”

wherez = (8,7),y = (a, 7). The equality in[(2]1) holds if and onlydfand 3 are linearly de-
pendentor ~ is a linear combination oft and 3, andxy = 0 butz andy are not simultaneously
equal to zero.

For the sake of completeness, we give here a short propf ¢f (2.1), which can also be found in
[2]-
Proof of Lemma Z2]1Consider the Gram determinant constructed by the veatgssand-y:
(,a) (a,8) (a,7)
Gla,8,7) = | (B,a) (8,6) (6,7)
(v.0) (v.8) (7.7)

According to the positive definiteness of Gram matrix we have, 3,~v) > 0, andG(«, 3,7) =
0 if and only if the vectorsy, 5 and~ are linearly dependent.
Expanding this determinant and using the conditjofi = 1 we obtain

Gla, 8,7) = al* 181" = (. 8)* = {llall*2* — 2(a, Bey + 1817 y*}
<l 181* = (@, 8)* = {llal* 2 — 2[(ev, Byl + 181" y*}
< llal* 181° = (e, 8)* = {llall =] = 181 1y1}*

wherex = (3,v) andy = («, ). It follows that the equality holds if and only if the vectars
andg are linearly dependent; or the vectprs a linear combination of the vectarand, and
xy = 0 butz andy are not simultaneously equal to zero. O

Applying Lemmg 2.1, we can now establish the following refinement of Holder's inequality.

Theorem 2.2. Leta,b, > 0, (n =1,2,...), , + . =1andp > 1. If 0 < [la]|, < +oc and
0 < |[b]l, < +oo, then

(2.2) (a,b) < [lall, floll, (1 =)™,
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where
r= (a0 - s0.0F  m-min{l 2k =1
b q
and
(ap/Q,c) (bq/Q,c) > 0.

The equality in 2) holds if and only i/?and b%/? are linearly dependent; or if the vector
c is a linear combination ofi*/2and b4/, and (a?/?, ¢) (b%/%,¢) = 0, but the vector is not

simultaneously orthogonal @/? andb%/2.

Proof. Firstly, we consider the cage# ¢. Without loss of generality, we suppose that ¢ >
1. Since’ + . = 1, we havep > 2. LetR = §, Q = 25, theny + 4 = 1. By Holder’s
inequality we obtain

(2.3) (a,b) = apby

k=1

I
WE

( ay bz/p> bi—q/p

i

1
1

0 / R R 0 1_/ Q Q
< (X () ) (X007
k=1 k=1

2/ _
— (ap/27bq/2) p HbHZ(l 2/p)

The equality in) holds if and only if”/2andb?/? are linearly dependent. In fact, the equality
in (2.3) holds if and only if for any:, there exists; (¢, # 0) such that

(akbz/p)R o (bi—q/p>Q .

Itis easy to deduce thaf/* = c,b?/”.
If o, 3 and~in ) are replaced by?/?, b%/? andc respectively, then we have

(2.4) (a2,8%2)" < [lally [l (1 = 7).
wherer = (S, (a,c) — S, (b, ¢))*. Substituting) int3), we obtain after simplifications
(2.5) (a,b) < lall, [lol[, (1 =)

It is known from Lemma 211 that the equality [n (2.5) holds if and only*if andb?/* are lin-
early dependent; or if the vectois a linear combination af?/2andb?/?, and(a?/?, ¢) (692, ¢) =

0, but the vector: is not simultaneously orthogonal /> andb?/2.
Note the symmetry of andg. The inequality[(2.R) follows fronj (2]5).
Secondly, consider the cage= 2. By Lemmg 2.1, we obtain:

[N

(2.6) (a,b) < lall flb]f (1 =r)*,

2
wherer = ((m) — %) . |le]l = 1 and(a,c)(b,c) > 0. The equality in ) holds if and
only if a andb are linearly dependent, or the vectois a linear combination of andb, and
(a,c)(b,c) =0, but(a,c) and(b, ¢) are not simultaneously equal to zero.

The proof of the theorem is thus completed. O
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Consider the example given in the Introduction. ket (ci,co,...,c,), ¢ € R?*", where
C = \/Lﬁ,z': 1,2,...,nandc; =0, =n+1,n+2,...,2n. Itis easy to deduce thgt| = 1
andr = 1. Substituting them intd (2. 2), it follows that the equality is valid.

The following theorem provides a similar result to Theofen 2.2.

Theorem 2.3.Let f (x),g(z) > 0 (z € (0,+00)), ; + ¢ = Landp > 1. If 0 < [| f||, < +o0
and0 < [[g]|, < +oo, then

(2.7) (f,9) < 1, llgll, (1 =)™,
where
11

r = (S,(f.h) — Sy(g.h))*, m:min{z_f@}’

I =1, ie. Hhuz(/ hQ(x)dx> 1
0

(7772, 1) (67, h) = 0.
The equality in ) holds if and only f*/2and ¢¢/? are linearly dependent; or the vectér
is a linear combination off”/and ¢%/2, and (f?/?,h) (g%, h) = 0, but the vectorh is not
simultaneously orthogonal t¢?/? and g?/2.

and

Its proof is similar to that of Theorem 2.2. Hence it is omitted.

3. APPLICATIONS

3.1. A Refinement of Minkowski’s Inequality. We firstly give a refinement of Minkowski’s
inequality for the discrete form.

Theorem 3.1.Letag, b, > 0,p > 1. If 0 < [Ja[[, < +o0 and0 < [|b[|, < +oo, then
(3.) la+bll, < (llall, + 116l ) (0 =)™,
where

la+b], = (Z (s + w) -

k=1

r=min{r (a),r (b}, m:mm{l’l_l}’

p p

2
|]|2/ la + ][>/
((a+ b)P/?, c) = (ax + bk)p/2 Ck,
=1

andc is a variable unit-vector.

Proof. Letm = min{l, 1— l},
p p

la+bl, = (Z (ax + bk)p)

k=1

D=
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By Theorenj 2.2, we have

1

(3.2) > ag (ar + )"t < lall, (Z (ar, + by) ) (1 —r(a)™

k=1 k=1
and
~ -}
(3.3) Zbk ap +bp)’ ' < 161], (Z (ax + by) ) (1—r()",
k=1 k=1
where

T =a,b,

2P/ ¢ a P2 ¢ ’
T(l,)_{( ) (a+b) ,)}

2 2
(el la + o]/

2
la+ by = (

((a + b)p/Q, c) =

2

(CLk —+ bk)p) ,

MgﬁMg

(ax + bk)p/2 Ck,

i

1

andc is a variable unit-vector.
Adding (3.%) and[(3]3) we obtain, after simplifying:

(3.4) la =+ 0ll,, < [lall,, (1 = r(a))™ +[|bl], (1 —r(b))"
Let » = min{r (a),r (b)}, then the inequality[ (3]1) follows. This completes the proof of
Theoreni 3. O

If we choose a unit-vectar such that itsth component is 1 and the rest is zero, ice=
(0,0,...,0,1,0,...), then
(%)

2 2
r (37) = { l'f/ _ (ai =+ bz)p/Q} r=a.b
2 2 ’
22 Jla+ o)/

Similarly, we can establish a refinement of Minkowski’s integral inequality.

Theorem 3.2.Letf (z),g(z) > 0,p > 1. If 0 < || f[|, < +o0and0 < ||g||, < +oo, then

(3.5) 1+ gll, < (11, + Dgll, ) (1 = 7)™,

where

1 1
r=min{r (f),r(9)}, m—mm{]—),l—ﬁ},
(172, 1) <<f+g>p/2ﬁ)}2
t) = 5 B s _f> 5

{ EZ 1 gl !

((F + g2 h) = / T (@) + 9 @) h (@) de,
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andh is a variable unit-vector, i.e.

Ih]| = {/OOO B () dx}é _1

Its proof is similar to that of Theorem 3.1. Hence it is omitted.

Remark 3.3. The variable unit-vectak can be chosen in accordance with our requirements. For
example, we may choogesuch that

2

M) =\ Ty

3.2. A Strengthening of Fan Ky’s Inequality.
Theorem 3.4.Let A, B andC be three positive definite matrices of order) < A\ < 1. Then

2 m
Acli |BCE

TA+O)F |3(B+0O))

(36) |AMB'" < M+(1-NB||1- }
2

N|=
N

where|C| = 7", m=min{\, 1— A}

Proof. When\ = 0, 1, the inequality[(3.3) is obviously valid. Hence we need only consider the
case) < A < 1.
If D is a positive definite matrix of order, then it is known from [4] that

+oo +oo
(3.7) J, _/ / Wx)dx—’ ‘;

wherez = (xy, z, ..., z,), anddz = dzidxs - - - dx,,.
Let F () = e =47 andG (z) = e V@B 1f p — L andg = L5, according to[(3}4)
and [2.7) we have

(3.8) "
A+ (1—
+o00 +oo
/ / F(2)G (x) da
{/+oo /+OOF7’ dx};{/%o"- +00Gq(x)dx};(1—r)m
_ /2 (1—r)" - h
CRER A)é
where

= (3P 8 . 10)

—{(Fam) e - (e ) o 2 ).
A

whereH = ¢~2@C2) ('is a positive definite matrix of order, and
—+00 “+oo %
|H| = {/ B ) dx} ~1.
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By the definition of the variable unit-vectdf, it is easy to deduce th&f’| = =™. Hence we

have
1 +oo oo 1
<F2A,H>:/ / Fs (2) H (2) da
_ _{ C| }
La+ol @+
and )
+00 +00 3 n/2 ) 2 C i
1/2x _ 1/X _J) T — S|
PR =4 [ o [ @) {|AW2} ik
whence )
AC|*
Sl/)\(F,H):ll—‘l
|2(A+C)|?
Similarly,
BC|
Siya-x (G, H) = |—|y
5 (B+O)
therefore we obtain
2
AC|* BC|*
9) S S
LA+O)* |FB+0)?
It follows from (3.8) and[(3.9) that the inequalify (B.3) is valid. O

3.3. AnImprovement of Hardy’s Inequality. We give firstly a refinement of Hardy’s inequal-
ity for the discrete form.

Theorem 3.5.Leta, >0, B, = >y, ax ,+;=1andp>1.1f0 < |lal|, < +oo, then

(3.10) 191, < (52 )l 1= )"
where )
o ( (a,¢) _ <ﬁp/2,c>>
lally 812 )

c is a variable unit-vector anegh = min {}D, é}

Proof. Firstly, we estimate the difference of the following two terms:

@11) o T = - (b (= D) B

o np (n=DP (apyp1gp |
—ﬁn(l—p_1)+ = ()

Applying the arithmetic-geometric mean inequality to the second term on the right-hand side of

(3:13) we get
(3.12) (CALanicimy

=

<

((p - 18+ ﬁfb—l) .

=
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It follows from (3.11) and[(3.12) that

e (1) ¢ S
1
= p—1 ((n —1)8 —nﬁﬁ) .

Summing the above inequality with respectntcwe have

Zﬁp — Zﬁf“ <—p—< B%) <

Hence

Letting N — oo, we get
o0 p [e.@] .
(3.13) Br<——=) Br an
Sy

Applying the inequality[(Z2]2) to the right-hand side of (3.13) we obtain

(314) p%l ;anﬂg—l < p%l <Z > (Zﬁ p—1)q ) 1 . T)m

n=1

=pfumumm) =",

wherer = (S,(a,c) — S,(8771, ¢))?, cis a variable unit-vector ant = min {l %}
We obtain from|[(3.13) andl (3.]14) after simplification

p m

(3.1 191, < (52 tall 1=
It is easy to deduce that

p/2 (p—1)q/2 p/2

S L e Rt I L L et
lall, 18771, 181,
Hence
_ p/2 -p/2 /2 —p/2\?

r= (@) lall,”” = (52.¢) 181,”")

wherec is a variable unit-vector. The proof of the theorem is completed. O

A variable unit-vector can be chosen in accordance with our requirements. For example, we
may choose € R* such that = (1,0,0,...). Obviously,||c|| = 1 and

2
—p/2 —p/2
r=a? (llall,”” = 181,7%) "

Similarly, we can establish a refinement of Hardy’s integral inequality.

Theorem 3.6.Let f(z) > 0, g(x) = ; [y f(t)dt, s+, =Tlandp > 1. If0 < [7 f(t)dt <
+00, then

p m
(3.16) lgll, < P— 1AL, (1 —r)™,
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where

2
(fP2,h)  (g*? h)
"= p/2 p/2 ’
1£11 lgll
h is a variable unit-vector, i.e.

HhH:(/ h?(t)dt)2:1 and m:mm{l,l}.
0 P q

Proof. Using integration by parts and then applyipg [2.2) we obtain that

(3.17) loll; = [ 0= L= (1.7

p - m
< L fl, o, (1=

p —1 m
ZHHprHgHﬁ (L=r)",

wherer = (S,(f,h) — S,(¢*~*, h))?, m = min {%, %} andh is a variable unit-vector. It is
easy to deduce that

(fp/27 h) - (gp/27 h)
Sy(f,h)=~—> and S, (¢ ', h) =—7".
' 117 q Ity
It follows that the inequality{ (3.16) is valid. The theorem is thus proved. O

A variable unit-vectorh can be chosen in accordance with our requirements. For example,
we may choosé such that, (z) = e~*/2. Obviously, we then have

|h| = (/OOO hQ(t)dt)% = 1.
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