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1. Introduction

For convenience, we need to introduce the following notations which will be fre-
quently used throughout the paper:

(ar, bs) =
∞∑

n=1

ar
nb

s
n, ‖a‖r =

(
∞∑

n=1

ar
n

) 1
r

, ‖a‖2 = ‖a‖ ,

(f r, gs) =

∫ ∞

0

f r (x) gs (x) dx, ‖f‖r =

(∫ ∞

0

f r (x) dx

) 1
r

, ‖f‖2 = ‖f‖ ,

and
Sr(α, y) =

(
αr/2, y

)
‖α‖−r/2

r ,

wherea = (a1, a2, . . . ) are sequences of real numbers,f : [0,∞) → [0,∞) are
measurable functions andα andy are elements of an inner product spaceE of real
sequences.

Let a = (a1, a2, . . . ) andb = (b1, b2, . . . ) be sequences of real numbers inRn.
Then Hölder’s inequality can be written in the form:

(1.1) (a, b) ≤ ‖a‖p ‖b‖q .

The equality in (1.1) holds if and only ifap
i = kbq

i , i = 1, 2, . . . , wherek is a
constant.

This inequality is important in function theory, functional analysis, Fourier analy-
sis and analytic number theory, etc. However, there are drawbacks in this inequality.
For example, let

a = (a1, a2, . . . , an, 0, . . . , 0) , b = (0, 0, . . . , bn+1, bn+2, . . . , b2n) , a, b ∈ R2n.
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If we let ai = bj = 1, i = 1, 2, . . . , n; j = n + 1, n + 2, . . . , 2n, and substitute them
into (1.1), then we have0 ≤ n. In this case, Hölder’s inequality is meaningless.

In the present paper we establish a new inequality that improves Hölder’s inequal-
ity and remedies the defect pointed out above. At the same time, some significant
refinements for a number of the classical inequalities can be established. As space is
limited, only several applications of the new inequality are given.
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2. Main Results

Let α andβ be elements of an inner product spaceE. Then the inner product ofα
andβ is denoted by(α, β) and the norm ofα is given by‖α‖ =

√
(α, α). In our

previous papers ([1], [2]), the following result has been obtained by means of the
positive definiteness of the Gram matrix.

Lemma 2.1. Letα, β andγ be three arbitrary vectors ofE. If ‖γ‖ = 1, then

(2.1) |(α, β)|2 ≤ ‖α‖2 ‖β‖2 − (‖α‖ |x| − ‖β‖ |y|)2 ,

wherex = (β, γ) , y = (α, γ). The equality in (2.1) holds if and only ifα andβ are
linearly dependent, or γ is a linear combination ofα andβ, andxy = 0 butx andy
are not simultaneously equal to zero.

For the sake of completeness, we give here a short proof of (2.1), which can also
be found in [2].

Proof of Lemma2.1. Consider the Gram determinant constructed by the vectorsα, β
andγ:

G(α, β, γ) =

∣∣∣∣∣∣∣
(α, α) (α, β) (α, γ)

(β, α) (β, β) (β, γ)

(γ, α) (γ, β) (γ, γ)

∣∣∣∣∣∣∣ .
According to the positive definiteness of Gram matrix we haveG(α, β, γ) ≥ 0, and
G(α, β, γ) = 0 if and only if the vectorsα, β andγ are linearly dependent.

Expanding this determinant and using the condition‖γ‖ = 1 we obtain

G(α, β, γ) = ‖α‖2 ‖β‖2 − (α, β)2 −
{
‖α‖2 x2 − 2(α, β)xy + ‖β‖2 y2

}
≤ ‖α‖2 ‖β‖2 − (α, β)2 −

{
‖α‖2 x2 − 2 |(α, β)xy|+ ‖β‖2 y2

}
≤ ‖α‖2 ‖β‖2 − (α, β)2 − {‖α‖ |x| − ‖β‖ |y|}2
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wherex = (β, γ) andy = (α, γ). It follows that the equality holds if and only if the
vectorsα andβ are linearly dependent; or the vectorγ is a linear combination of the
vectorα andβ, andxy = 0 butx andy are not simultaneously equal to zero.

Applying Lemma2.1, we can now establish the following refinement of Hölder’s
inequality.

Theorem 2.2. Let an,bn ≥ 0, (n = 1, 2, . . . ), 1
p

+ 1
q

= 1 andp > 1. If 0 < ‖a‖p <

+∞ and0 < ‖b‖q < +∞, then

(2.2) (a, b) ≤ ‖a‖p ‖b‖q (1− r)m ,

where

r = (Sp(a, c)− Sq(b, c))
2 , m = min

{
1

p
,
1

q

}
, ‖c‖ = 1

and (
ap/2, c

) (
bq/2, c

)
≥ 0.

The equality in (2.2) holds if and only ifap/2and bq/2 are linearly dependent; or if
the vectorc is a linear combination ofap/2andbq/2, and

(
ap/2, c

) (
bq/2, c

)
= 0, but

the vectorc is not simultaneously orthogonal toap/2 andbq/2.

Proof. Firstly, we consider the casep 6= q. Without loss of generality, we suppose
that p > q > 1. Since 1

p
+ 1

q
= 1, we havep > 2. Let R = p

2
, Q = p

p−2
, then

1
R

+ 1
Q

= 1. By Hölder’s inequality we obtain

(a, b) =
∞∑

k=1

akbk =
∞∑

k=1

(
akb

q/p
k

)
b
1−q/p
k(2.3)

http://jipam.vu.edu.au
mailto:mingzhegao@163.com
mailto:mingzhegao@163.com
http://jipam.vu.edu.au


Hölder’s Inequality
and Applications

Xuemei Gao, Mingzhe Gao and

Xiaozhou Shang

vol. 8, iss. 2, art. 44, 2007

Title Page

Contents

JJ II

J I

Page 7 of 19

Go Back

Full Screen

Close

≤

(
∞∑

k=1

(
akb

q/p
k

)R
) 1

R
(

∞∑
k=1

(
b
1−q/p
k

)Q
) 1

Q

=
(
ap/2, bq/2

)2/p ‖b‖q(1−2/p)
q .

The equality in (2.3) holds if and only ifap/2andbq/2 are linearly dependent. In fact,
the equality in (2.3) holds if and only if for anyk, there existsc0 (c0 6= 0) such that(

akb
q/p
k

)R

= c0

(
b
1−q/p
k

)Q

.

It is easy to deduce thatap/2
k = c0b

q/2
k .

If α, β andγ in (2.1) are replaced byap/2, bq/2 andc respectively, then we have

(2.4)
(
ap/2, bq/2

)2 ≤ ‖a‖p
p ‖b‖

q
q (1− r) ,

wherer = (Sp (a, c)− Sq (b, c))2. Substituting (2.4) into (2.3), we obtain after sim-
plifications

(2.5) (a, b) ≤ ‖a‖p ‖b‖q (1− r)
1
p .

It is known from Lemma2.1 that the equality in (2.5) holds if and only ifap/2 and
bq/2 are linearly dependent; or if the vectorc is a linear combination ofap/2andbq/2,
and

(
ap/2, c

) (
bq/2, c

)
= 0, but the vectorc is not simultaneously orthogonal toap/2

andbq/2.
Note the symmetry ofp andq. The inequality (2.2) follows from (2.5).
Secondly, consider the casep = 2. By Lemma2.1, we obtain:

(2.6) (a, b) ≤ ‖a‖ ‖b‖ (1− r)
1
2 ,

wherer =
(

(a,c)
‖a‖ −

(b,c)
‖b‖

)2

, ‖c‖ = 1 and(a, c) (b, c) ≥ 0. The equality in (2.6) holds

if and only if a andb are linearly dependent, or the vectorc is a linear combination
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of a andb, and(a, c)(b, c) = 0, but (a, c) and(b, c) are not simultaneously equal to
zero.

The proof of the theorem is thus completed.

Consider the example given in the Introduction. Letc = (c1, c2, . . . , c2n), c ∈
R2n, whereci = 1√

n
, i = 1, 2, . . . , n andcj = 0, j = n + 1, n + 2, . . . , 2n. It is easy

to deduce that‖c‖ = 1 andr = 1. Substituting them into (2.2), it follows that the
equality is valid.

The following theorem provides a similar result to Theorem2.2.

Theorem 2.3. Let f (x) , g (x) ≥ 0 (x ∈ (0, +∞)), 1
p

+ 1
q

= 1 and p > 1. If
0 < ‖f‖p < +∞ and0 < ‖g‖q < +∞, then

(2.7) (f, g) ≤ ‖f‖p ‖g‖q (1− r)m ,

where

r = (Sp(f, h)− Sq(g, h))2 , m = min

{
1

p
,
1

q

}
,

‖h‖ = 1, i.e. ‖h‖ =

(∫ ∞

0

h2(x)dx

) 1
2

= 1

and (
fp/2, h

) (
gq/2, h

)
≥ 0.

The equality in (2.3) holds if and only iffp/2andgq/2 are linearly dependent; or the
vectorh is a linear combination offp/2andgq/2, and

(
fp/2, h

) (
gq/2, h

)
= 0, but the

vectorh is not simultaneously orthogonal tofp/2 andgq/2.

Its proof is similar to that of Theorem2.2. Hence it is omitted.
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3. Applications

3.1. A Refinement of Minkowski’s Inequality

We firstly give a refinement of Minkowski’s inequality for the discrete form.

Theorem 3.1.Letak, bk ≥ 0, p > 1. If 0 < ‖a‖p < +∞ and0 < ‖b‖p < +∞, then

(3.1) ‖a + b‖p <
(
‖a‖p + ‖b‖p

)
(1− r)m,

where

‖a + b‖p =

(
∞∑

k=1

(ak + bk)
p

) 1
p

,

r = min {r (a) , r (b)} , m = min

{
1

p
, 1− 1

p

}
,

r (x) =

{(
xp/2, c

)
‖x‖p/2

p

−
(
(a + b)p/2, c

)
‖a + b‖p/2

p

}2

, x = a, b;

(
(a + b)p/2, c

)
=

∞∑
k=1

(ak + bk)
p/2 ck,

andc is a variable unit-vector.

Proof. Let m = min
{

1
p
, 1− 1

p

}
,

‖a + b‖p =

(
∞∑

k=1

(ak + bk)
p

) 1
p

.
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By Theorem2.2, we have

(3.2)
∞∑

k=1

ak (ak + bk)
p−1 ≤ ‖a‖p

(
∞∑

k=1

(ak + bk)
p

)1− 1
p

(1− r(a))m

and

(3.3)
∞∑

k=1

bk (ak + bk)
p−1 ≤ ‖b‖p

(
∞∑

k=1

(ak + bk)
p

)1− 1
p

(1− r(b))m ,

where

r (x) =

{(
xp/2, c

)
‖x‖p/2

p

−
(
(a + b)p/2, c

)
‖a + b‖p/2

p

}2

, x = a, b,

‖a + b‖p/2
p =

(
∞∑

k=1

(ak + bk)
p

) 1
2

,

(
(a + b)p/2, c

)
=

∞∑
k=1

(ak + bk)
p/2 ck,

andc is a variable unit-vector.
Adding (3.5) and (3.3) we obtain, after simplifying:

(3.4) ‖a + b‖p ≤ ‖a‖p (1− r(a))m + ‖b‖p (1− r(b))m .

Let r = min {r (a) , r (b)}, then the inequality (3.1) follows. This completes the
proof of Theorem3.1.
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If we choose a unit-vectorc such that itsith component is 1 and the rest is zero,
i.e. c = (0, 0, . . . , 0, 1

(i)
, 0, . . . ), then

r (x) =

{
x

p/2
i

‖x‖p/2
p

− (ai + bi)
p/2

‖a + b‖p/2
p

}2

x = a, b.

Similarly, we can establish a refinement of Minkowski’s integral inequality.

Theorem 3.2. Let f (x) , g (x) ≥ 0, p > 1. If 0 < ‖f‖p < +∞ and0 < ‖g‖p <
+∞, then

(3.5) ‖f + g‖p <
(
‖f‖p + ‖g‖p

)
(1− r)m,

where

‖f + g‖p =

(∫ ∞

0

(f (x) + g (x))p dx

) 1
p

,

r = min {r (f) , r (g)} , m = min

{
1

p
, 1− 1

p

}
,

r (t) =

{(
tp/2, h

)
‖t‖p/2

p

−
(
(f + g)p/2, h

)
‖f + g‖p/2

p

}2

, t = f, g,

(
(f + g)p/2, h

)
=

∫ ∞

0

(f (x) + g (x))p/2 h (x) dx,

andh is a variable unit-vector, i.e.

‖h‖ =

{∫ ∞

0

h2 (x) dx

} 1
2

= 1.
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Its proof is similar to that of Theorem3.1. Hence it is omitted.

Remark1. The variable unit-vectorh can be chosen in accordance with our require-
ments. For example, we may chooseh such that

h (x) =

√
2

π (1 + x2)
.

3.2. A Strengthening of Fan Ky’s Inequality

Theorem 3.3. Let A, B and C be three positive definite matrices of ordern, 0 ≤
λ ≤ 1. Then

(3.6) |A|λ |B|1−λ

≤ |λA + (1− λ) B|

1−

 |AC|
1
4∣∣1

2
(A + C)

∣∣ 12 − |BC|
1
4∣∣1

2
(B + C)

∣∣ 12
2m

,

where|C| = πn, m = min {λ, 1− λ}.

Proof. Whenλ = 0, 1, the inequality (3.3) is obviously valid. Hence we need only
consider the case0 < λ < 1.

If D is a positive definite matrix of ordern, then it is known from [4] that

(3.7) Jn =

∫ +∞

−∞
· · ·
∫ +∞

−∞
e−(x,Dx)dx =

πn/2

|D|
1
2

,

wherex = (x1, x2, . . . , xn), anddx = dx1dx2 · · · dxn.
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Let F (x) = e−λ(x,Ax) andG (x) = e−(1−λ)(x,Bx). If p = 1
λ

andq = 1
1−λ

, accord-
ing to (3.4) and (2.7) we have

πn/2

|λA + (1− λ) B|
1
2

(3.8)

=

∫ +∞

−∞
· · ·
∫ +∞

−∞
F (x) G (x) dx

≤
{∫ +∞

−∞
· · ·
∫ +∞

−∞
F p (x) dx

} 1
p
{∫ +∞

−∞
· · ·
∫ +∞

−∞
Gq (x) dx

} 1
q

(1− r)m

=
πn/2 (1− r)m(
|A|λ |B|1−λ

) 1
2

,

where

r =
(
S 1

λ
(F, H)− S 1

1−λ
(G, H)

)2

=

{(
F

1
2λ , H

)
‖F‖−

1
2λ

1
λ

−
(
G

1
2(1−λ) , H

)
‖G‖

− 1
2(1−λ)
1

1−λ

}
,

whereH = e−
1
2
(x,Cx), C is a positive definite matrix of ordern, and

‖H‖ =

{∫ +∞

−∞
· · ·
∫ +∞

−∞
H2 (x) dx

} 1
2

= 1.

By the definition of the variable unit-vectorH, it is easy to deduce that|C| = πn.
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Hence we have(
F

1
2λ , H

)
=

∫ +∞

−∞
· · ·
∫ +∞

−∞
F

1
2λ (x) H (x) dx

=
πn/2∣∣1

2
(A + C)

∣∣ 12 =

{
|C|∣∣1

2
(A + C)

∣∣
} 1

2

and

‖F‖1/2λ
1/λ =

{∫ +∞

−∞
· · ·
∫ +∞

−∞
F 1/λ (x) dx

} 1
2

=

{
πn/2

|A|1/2

} 1
2

=

{
|C|
|A|

} 1
4

,

whence

S1/λ (F, H) =
|AC|

1
4∣∣1

2
(A + C)

∣∣ 12 .

Similarly,

S1/(1−λ) (G, H) =
|BC|

1
4∣∣1

2
(B + C)

∣∣ 12 ,

therefore we obtain

(3.9) r =

 |AC|
1
4∣∣1

2
(A + C)

∣∣ 12 − |BC|
1
4∣∣1

2
(B + C)

∣∣ 12
2

.

It follows from (3.8) and (3.9) that the inequality (3.3) is valid.
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3.3. An Improvement of Hardy’s Inequality

We give firstly a refinement of Hardy’s inequality for the discrete form.

Theorem 3.4.Letan ≥ 0, βn = 1
n

∑n
k=1 ak,

1
p

+ 1
q

= 1 andp > 1. If 0 < ‖a‖p <
+∞, then

(3.10) ‖β‖p ≤
(

p

p− 1

)
‖a‖p (1− r)m,

where

r =

(
(ap/2, c)

‖a‖p/2
p

− (βp/2, c)

‖β‖p/2
p

)2

,

c is a variable unit-vector andm = min
{

1
p
, 1

q

}
.

Proof. Firstly, we estimate the difference of the following two terms:

βp
n −

p

p− 1
βp−1

n an = βp
n −

p

p− 1
(nβn − (n− 1)βn−1) βp−1

n(3.11)

= βp
n

(
1− np

p− 1

)
+

(n− 1)p

p− 1

(
(βp

n)p−1βp
n−1

) 1
p .

Applying the arithmetic-geometric mean inequality to the second term on the right-
hand side of (3.11) we get

(3.12)
(
(βp

n)p−1βp
n−1

) 1
p ≤ 1

p

(
(p− 1)βp

n + βp
n−1

)
.
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It follows from (3.11) and (3.12) that

βp
n −

p

p− 1
βp−1

n an ≤ βp
n

(
1− np

p− 1

)
+

(n− 1)

p− 1

(
(p− 1)βp

n + βp
n−1

)
=

1

p− 1

(
(n− 1)βp

n−1 − nβp
n

)
.

Summing the above inequality with respect ton, we have

N∑
n=1

βp
n −

p

p− 1

N∑
n=1

βp−1
n an ≤ − 1

p− 1
(Nβp

N) ≤ 0.

Hence
N∑

n=1

βp
n ≤

p

p− 1

N∑
n=1

βp−1
n an.

LettingN →∞, we get

(3.13)
∞∑

n=1

βp
n ≤

p

p− 1

∞∑
n=1

βp−1
n an.

Applying the inequality (2.2) to the right-hand side of (3.13) we obtain

p

p− 1

∞∑
n=1

anβ
p−1
n ≤ p

p− 1

(
∞∑

n=1

ap
n

) 1
p
(

∞∑
n=1

β(p−1)q
n

) 1
q

(1− r)m(3.14)

=
p

p− 1
‖a‖p

(
‖β‖p

p

) 1
q
(1− r)m ,

wherer = (Sp(a, c)− Sq(β
p−1, c))

2, c is a variable unit-vector andm = min
{

1
p
, 1

q

}
.
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We obtain from (3.13) and (3.14) after simplification

(3.15) ‖β‖p ≤
(

p

p− 1

)
‖a‖p (1− r)m.

It is easy to deduce that

Sp(a, c) =

(
ap/2, c

)
‖a‖p/2

p

and Sq(β
p−1, c) =

(β(p−1)q/2, c)

‖βp−1‖q/2
q

=
(βp/2, c)

‖β‖p/2
p

.

Hence

r =
((

ap/2, c
)
‖a‖−p/2

p −
(
βp/2, c

)
‖β‖−p/2

p

)2

,

wherec is a variable unit-vector. The proof of the theorem is completed.

A variable unit-vectorc can be chosen in accordance with our requirements. For
example, we may choosec ∈ R∞ such thatc = (1, 0, 0, . . . ). Obviously,‖c‖ = 1
and

r = ap
1

(
‖a‖−p/2

p − ‖β‖−p/2
p

)2

.

Similarly, we can establish a refinement of Hardy’s integral inequality.

Theorem 3.5. Let f(x) ≥ 0, g(x) = 1
x

∫ x

0
f(t)dt, 1

p
+ 1

q
= 1 and p > 1. If

0 <
∫∞

0
f(t)dt < +∞, then

(3.16) ‖g‖p <
p

p− 1
‖f‖p (1− r)m ,

where

r =

(
(fp/2, h)

‖f‖p/2
p

− (gp/2, h)

‖g‖p/2
p

)2

,
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h is a variable unit-vector, i.e.

‖h‖ =

(∫ ∞

0

h2(t)dt

) 1
2

= 1 and m = min

{
1

p
,
1

q

}
.

Proof. Using integration by parts and then applying (2.2) we obtain that

‖g‖p
p =

∫ ∞

0

gp(t)dt =
p

p− 1

(
f, gp−1

)
(3.17)

≤ p

p− 1
‖f‖p

∥∥gp−1
∥∥

q
(1− r)m

=
p

p− 1
‖f‖p ‖g‖

p−1
p (1− r)m ,

wherer = (Sp(f, h)− Sq(g
p−1, h))

2, m = min
{

1
p
, 1

q

}
andh is a variable unit-

vector. It is easy to deduce that

Sp (f, h) =

(
fp/2, h

)
‖f‖p/2

p

and Sq

(
gp−1, h

)
=

(
gp/2, h

)
‖g‖p/2

p

.

It follows that the inequality (3.16) is valid. The theorem is thus proved.

A variable unit-vectorh can be chosen in accordance with our requirements. For
example, we may chooseh such thath (x) = e−x/2. Obviously, we then have

‖h‖ =

(∫ ∞

0

h2(t)dt

) 1
2

= 1.
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