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1. Introduction ||\v

For convenience, we need to introduce the following notations which will be fre-
guently used throughout the paper:

1
oo 00 P
(CLT?bS) = Zanbfw Ha’H - <Z > ) ||a||2 - ||CLH ) Hélder’s Inequality

n=1 and Applications
Xuemei Gao, Mingzhe Gao and

00 Xiaozhou Shang
= / [ (z) g’ (x)dx, | fll, = (/ fr(x da:) .l =11 vol. 8, iss. 2, art. 44, 2007
0
and :

Sr(oz,y) _ (ar/2 ) HaH 7’/2 Title Page
wherea = (aq,as,...) are sequences of real numbefs; [0,00) — [0,00) are Senthe
measurable functions andandy are elements of an inner product spdcef real < >
sequences.

Leta = (a1, as,...)andb = (b1, b, ...) be sequences of real numbersHH. < >
Then Hdlder’s inequality can be written in the farm Page 3 of 19
(1.1) (a,b) < |lall, lIb]], - Go Back
The equality in {.1) holds if and only ifa? = kb?, i = 1,2,..., wherek is a AUl e
constant. Close

This inequality is important in function theory, functional analysis, Fourier analy-
sis and analytic number theory, etc. However, there are drawbacks in this inequality. =~ journal of inequalities

For example, let in pure and applied
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Ifweleta, =b;=1,:=1,2,...,n;j =n+1,n+2,...,2n, and substitute them
into (1.1), then we havé® < n. In this case, Holder's inequality is meaningless.

In the present paper we establish a new inequality that improves Holder’s inequal-
ity and remedies the defect pointed out above. At the same time, some significant
refinements for a number of the classical inequalities can be established. As space is
limited, only several applications of the new inequality are given.
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2. Main Results

Let « and 3 be elements of an inner product spdceThen the inner product af
andg is denoted by, 3) and the norm ofv is given by||«| = /(«, ). In our

previous papers {, [2]), the following result has been obtained by means of the

positive definiteness of the Gram matrix.
Lemma 2.1. Let«, 5 and~y be three arbitrary vectors aF. If ||| = 1, then

(2.1) [, OF < Nall” 181* = (llall 1z = 181 1y])*

wherex = (5,7v),y = («,~). The equality inZ.1) holds if and only ifx and g are
linearly dependenbr ~ is a linear combination of and 3, andzy = 0 butz andy
are not simultaneously equal to zero.

For the sake of completeness, we give here a short proaf §f (vhich can also
be found in PJ.

Proof of Lemma&.1. Consider the Gram determinant constructed by the veatgts
and~:
(a,0) (o, 8) (a,7)
Gla,B,7) =1 (B,a) (3,8) (B,7)
(v.a) (v.8) (1,7

According to the positive definiteness of Gram matrix we h@ve, 5,~v) > 0, and
G(a, 8,7) = 0if and only if the vectorsy, 3 and~ are linearly dependent.
Expanding this determinant and using the condiﬂgﬂi = 1 we obtain

Gla, B,7) = llal* 181" — — {llal*2* = 2(c, )y + 18]” v}
< [lal* 181" ~ — {llal* 2 = 2|(a. B)ay| + 181" y* }
< llal* 151 —( a, ) —{llall =] = 1151l [y1}*
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wherez = (3, ) andy = («, ). It follows that the equality holds if and only if the
vectorsa andg are linearly dependent; or the vectois a linear combination of the
vectora andg, andzy = 0 butx andy are not simultaneously equal to zero. [J

Applying LemmaZ2.1, we can now establish the following refinement of Holder’s
inequality.

Theorem 2.2. Leta, b, > 0, (n =1,2,...
+ooand0 < ||b]|, < +oo, then

), 5+ 5 =1landp > 1. If0 < [af, <

(2.2) (a,0) < [lall, f[oll, (1 =)™,

where

11
r= (Sy(a,c) = Sb ), m= mm{];, 5}, el = 1

and
(ap/Q,c) (bq/Q,c) > 0.

The equality in £.2) holds if and only ifa?/2and b%/? are linearly dependent; or if
the vectorc is a linear combination ofi*/?and v%/2, and (a?/?, c) (b%/2,¢) = 0, but

the vectore is not simultaneously orthogonal t6/% and b%/2.

Proof. Firstly, we consider the cage# ¢. Without loss of generality, We suppose
thatp > ¢ > 1. Since% + = =1 wehavep > 2. LetR = £, Q = then

p— 2’
£ + ¢ = 1. By Holder's inequallty we obtain

(2.3) Zakbk - Z ( bq/p) b/

k=1
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1

oo y R oo 1—g/ Q Q
< (X (wat) ) (X 00)
k=1 k=1

2/ _
— (ap/2, bq/2) p HbHZ(l 2/p)

==

The equality in £.3) holds if and only ifa?/2andb?/? are linearly dependent. In fact,
the equality in £.3) holds if and only if for anyk, there existg, (co # 0) such that

R Q
(akbz/p> = (b,lg_Q/p> .

Itis easy to deduce thaf/? = cb?/”.
If a, 3 andy in (2.1) are replaced by?/?, b9/? andc respectively, then we have

(2.4) (a,07)" < Jlally [5]l3 (1 = 7).

wherer = (S, (a,c) — S, (b, ¢))*. Substituting 2.4) into (2.3), we obtain after sim-
plifications

(2.5) (a,b) < all, [Ibll, (1 =)

It is known from Lemma2.1 that the equality in4.5) holds if and only ifa?/? and
b?/2 are linearly dependent; or if the veciois a linear combination af?/?andb?/2,
and (a?/?, c) (b4/2,¢) = 0, but the vector is not simultaneously orthogonal />
andp?/2,
Note the symmetry gb andq. The inequality 2.2) follows from (2.5).
Secondly, consider the cage= 2. By LemmaZ2.1, we obtain:

(2.6) (a,b) < [|a] |Ib]| (1 = )2,

2
wherer = (ﬂfm) . ﬂ‘;,;fﬁ) el = 1and(a, ¢) (b, ¢) > 0. The equality in £.6) holds

if and only if « andb are linearly dependent, or the vectois a linear combination
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of a andb, and(a, ¢)(b,c) = 0, but(a, c) and(b, ¢) are not simultaneously equal to
zero.
The proof of the theorem is thus completed. O

Consider the example given in the Introduction. ket (ci,co,...,cop), ¢ €
R?", wherec; = \/Lﬁ,z’: 1,2,...,nandc; =0,j =n+1,n+2,...,2n. Itis easy
to deduce thafc|| = 1 andr = 1. Substituting them intoA 2), it follows that the
equality is valid.

The following theorem provides a similar result to Theoram

Theorem 2.3. Let f (z),g(z) > 0 (z € (0,400)), 5 + ¢ = Landp > 1. If

0 <|[[fll, < +ocand0 < [|g][, < +o0, then

(2.7) (f,9) < I, Nlgll, (1 =7)™,
where
F = (Sy(fh) = Sylg.h)?,  m= mm{l, 1},
b q

Il =1, ie. Hhuz(/ h%@m) )
0

(f7/2,h) (g%, h) > 0.
The equality in 2.3) holds if and only iff?/2and ¢¢/? are linearly dependent; or the
vectorh is a linear combination of?/2and¢%/2, and ( f7/2, h) (¢%/?, k) = 0, but the
vectorh is not simultaneously orthogonal /% and g/2.

and

Its proof is similar to that of Theorem 2. Hence it is omitted.
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3. Applications

3.1. A Refinement of Minkowski’s Inequality

We firstly give a refinement of Minkowski’s inequality for the discrete form.
Theorem 3.1.Letay, by > 0,p > 1. If 0 < [[a||, < +c0@and0 < [|b]|, < +oo, then

Hélder’s Inequality
and Applications

(31) ||a + pr < (Ha”p + ||b||p> (1 — r)’”, Xuemei Gao, Mingzhe Gao and

Xiaozhou Shang

where vol. 8, iss. 2, art. 44, 2007
1
> P
la+ b, = (Z (ar + bk)p> : Title Page
k=t 1 1 Contents
r=min{r (a),r(b)}, m:min{z—o,l—g}, o W
2
(z?2,¢)  ((a+b)P%¢) < >
rie) = P2 e (R Page 9 of 19
(s la + 0|l age 9 0
> Go Back
a—+ c) = ay + O Ck
((a +b)"%,c) (ak + b)" e,
k=1 Full Screen
andc is a variable unit-vector. Close
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By Theorem2.2, we have

B =

WE

(3.2) Z ar (a4 bp)’ ' < lall, ( (ar + bk)p) (1—r(a))™

= k=1
and
[ee) [ee) 17%
(33) Zbk ak —f- bk p=1 < Hb” (Z Qg =+ bk ) (1 — T(b))m,
k=1 k=1
where
/2 b)P/2 ?
() = { (#.0) _ (la b } o
Es |+ blf;
la + b|7/? = (Z (ax +bk)p> ,
k=1
((a+b)P? c) = Z (ar + bp)""* ek,
k=1
andc is a variable unit-vector.
Adding (3.5) and @3.3) we obtain, after simplifying:
(3.4) la + 0[], < l[all, (1 = r(a))™ + []b]], (1 — (b))

Let r = min{r (a),r (b)}, then the inequality.1) follows. This completes the
proof of Theorens.1. O]
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If we choose a unit-vectar such that itgth component is 1 and the rest is zero,

i.,e.c=(0,0,...,0,1,0,...), then
(@)

2
l’f/z ai+bip/2
r(x)Z{ |p/2—( ) r =a,b.

2
Izl lla =+ I

Similarly, we can establish a refinement of Minkowski’s integral inequality.
Theorem 3.2.Let f (z),g(z) > 0,p > 1. If 0 < [[f[|, < +ocand0 < [|g|, <

+00, then
(3.5) 1 +gll, < (11, + llgl, ) (1 = )"

where
I +al, = ([~ 7@+ >ﬂm),

r=min{r(f),r(9)}, m= mm{l }
/2 w2, ’
r(t):{(t T h} o

2 2
It/ I1f + gll?/

«f+mM%M=1£ (f (2) + g (@) h () do,

andh is a variable unit-vector, i.e.

1Al = {/OOO B () d:p}é _1
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Its proof is similar to that of Theorem 1. Hence it is omitted.

Remarkl. The variable unit-vectok can be chosen in accordance with our require-
ments. For example, we may chodssuch that

2

"=\ ey

3.2. A Strengthening of Fan Ky’s Inequality
Theorem 3.3.Let A, B and C' be three positive definite matrices of order0 <
A < 1.Then

3.6) |AB]'"™

2 m

[Acl  |BC)
LA+O)F  |3(B+O)?

<M+ (1-NB|[1-

where|C| = 7", m =min{\, 1— A}

Proof. When\ = 0, 1, the inequality £.3) is obviously valid. Hence we need only
consider the case< A < 1.
If D is a positive definite matrix of order, then it is known from4] that

+oo too n/2
s BE

wherez = (xy, zo, ..., z,), anddzr = dridxs - - - dx,,.
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Let F (z) = e X®42) andG (z) = e~V @5B2)
ing to (3.4) and ¢.7) we have

n/2
(3.8) T
M+ (1—
“+o0o +oo
/ / x)dx
+00 +00 » +00 +o0 .
{/ / FP (x dx} {/ / Gq(:r)dx} (1—r)"
/2 1 — r
(147 1B1)”
where
2
r= <S§(F, H) =51 (G,H))

={(FHm) IFI - (e ) 16 3 ).

whereH = ¢2®C2) ('is a positive definite matrix of order, and

—+00 —+00 %
HHH:{/ HQ(;c)da:} =1

By the definition of the variable unit-vectdf, it is easy to deduce thaf'| = =".

. If p = + and¢ = %5, accord-
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Hence we have

and
+o0 +oo 3 n/2 2
1/2X T
71375 ={/_OO - Fl/wx)dx} :{W} :{
whence )
AC|*
Sy (F H) = . | | T
12(A+C)|?
Similarly,
BC|
Si/a-x (G, H) = 1’ | T
11(B+0O)|?
therefore we obtain
2
|[AC|*  |BC|*

(3.9) r=

sarol fseo)
It follows from (3.8) and (.9) that the inequality{.3) is valid.
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3.3. AnImprovement of Hardy’s Inequality

We give firstly a refinement of Hardy’s inequality for the discrete form.

Theorem 3.4.Leta, >0, B, = ;> p_ ax ,+,=1landp>1.1f0 < |a, <

400, then

(3.10) 191, < (52 ) al, (0= 0,

;e ((ap/%) . (ﬁp/2,6)>2
a2~ 81ER )

cis a variable unit-vector anegh = min {1—1), %}

where

Proof. Firstly, we estimate the difference of the following two terms:

@A) B = T e = B = g (= (0= D) B

p—1

-1

= (1_pnp )+ (=08 (g )

p—1

Applying the arithmetic-geometric mean inequality to the second term on the right-

hand side of§.11) we get

=

(3.12) (Ciay

<

((p - 1B+ 5712—1) .

D=
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It follows from (3.11) and 3.12) that

-1
R Y (1 e ) + (Z_ Y (- 18+ A)
1
=01 ((n=1)By_y —nph).

Summing the above inequality with respectitove have
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1 Xiaozhou Shang
Zﬁp Zﬁp ta, < _p— (NBY) < vol. 8, iss. 2, art. 44, 2007
Hence :
N D N Title Page
P p—1
;5" = p—1 Z_; Ga"an. Contents
Letting N — oo, we get « »
(3.13) iﬁp < Liﬁp_lan. ) ’
- "Tp-1 1 " Page 16 of 19
Applying the inequality £.2) to the right-hand side of3(13) we obtain Go Back
0o Full Screen
p -1 p 1q m
3.14 — W< P (1—
( ) p_an;“ Pn —p_1<; > (Zﬁ > r) Close
P journal of inequalities
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We obtain from .13 and (3.14) after simplification

p m
191, < (2 ) al, 0=
It is easy to deduce that

(ap/27c)
Sp(a7 C) = W
p

(3.15)

B (5(p71)q/27 c)
Sq(ﬁp 170) - =
_114/2
16712

(572, 0)
181

Hence )
r= (@, 0) Jall,”* = (5"2,¢) 181,"”) .

wherec is a variable unit-vector. The proof of the theorem is completed. [

A variable unit-vector: can be chosen in accordance with our requirements. For
example, we may choosec R* such that = (1,0,0,...). Obviously,||c|| = 1
and

2
r=at (Jlall,”* = 181,7) "
Similarly, we can establish a refinement of Hardy’s integral inequality.
Theorem 3.5. Let f(x) > 0, g(x) = 1 [¢ f(t)dt,  + 1 = 1andp > 1. If
0< ;7 f(t)dt < 400, then

(3.16) o, < -2 171, (1 =)™

where

;e ((f”/z,h) 3 <gp/2,h>>2

2 2
171 lgl12/

Hélder’s Inequality

and Applications
Xuemei Gao, Mingzhe Gao and

Xiaozhou Shang

vol. 8, iss. 2, art. 44, 2007

Title Page
Contents
<44 44
< 14
Page 17 of 19
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:mingzhegao@163.com
mailto:mingzhegao@163.com
http://jipam.vu.edu.au

h is a variable unit-vector, i.e.

0 P q
Proof. Using integration by parts and then applyirigd) we obtain that
Y T
lolf = [ et = 2 (7.7
—p - m
< Ll o, (=)

p —1 m
ZEHfIIpIIgH,’j (1—=7r)",

(3.17)

wherer = (S,(f,h) — S,(g" ', h))*, m = min{%, %} andh is a variable unit-
vector. It is easy to deduce that

p/2 /2
% and S, (¢" " h) = %.
1£115 l9ll,

It follows that the inequalityd.16) is valid. The theorem is thus proved. [

Sp(fvh):

A variable unit-vectorh, can be chosen in accordance with our requirements. For
example, we may choosesuch that (x) = e~*/2. Obviously, we then have

1

1Bl = (/Ooo h2(t)dt>2 _1
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