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Abstract

Some new inequalities for certain trigonometric polynomials with complex semi-
convex and complex convex coefficients are given.
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Petrovt [4] proved the following complementary triangle inequality for se-
quences of complex numbefs;, 2, ..., 2,} .

Theorem A. Let o be a real number an@ < ¢ < 7. If {z1,2,...,2,} are
complex numbers suchthat— 0 < argz, < a+0,v=1,2,...,n,then

n
>
v=1

For0 < 6 < 7 denote byK (0) the coneK (0) = {z : |argz| < 0}.
Let AN, = A\, — A\yq, forn = 1,2,3,..., where{\,} is a sequence of
complex numbers. Then,

AN, = A(AN) = AN, — Adir = Ay — 201 + Ao, n=1,2,3,...

> (cos0) Z |2, |.
v=1

The author Tomovski (seé]) proved the following inequality for cosine and
sine polynomials with complex-valued coefficients.

Theorem B. Letx # 2kn for k = 0,+1,+2, ...

1. Let {b;} be a positive nondecreasing sequence &ng} a sequence of
complex numbers such thAt(zg—:) € K (). Then

< 1 " 1 | + 1 bm| |
— | Um — 7 |Unl|,
- ‘sin%‘ cos 0 cosf b,

(Vn,m €N, m >n).
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2. Let {b} be a positive nondecreasing sequence éng} a sequence of
complex numbers such that(u,by) € K (0) . Then

1 1 b,
‘ ’ [(1+cos¢9) [un] + s@b [l

(Vn,m €N, m >n).

)| <

Here f (z) = sinz or f (x) = cosz.

Similarly, the results of Theorei® were given by the author iro] for sums
of type 7" (—1)* uyf (kx) , where agairyf (z) = sinz or f () = cos z.

Mitrinovi€ and Péaric (see P, 3]) proved the following inequalities for co-
sine and sine polynomials with nonnegative coefficients.

Theorem C. Letx # 2kw fork =0, +1,+2, ..

1. Let {b;} be a positive nondecreasing sequence &ad a nonnegative
sequence such thdty,b, ' } is a decreasing sequence. Then

Zakf (kx)

2. Let {b;} be a positive nondecreasing sequence &ag a nonnegative
sequence such that, b, } is an increasing sequence. Then

Zakf (kz)

Heref (x) = sinx or f (x) = cosz.

_—(b—m), (Vn,m €N, m >n).
‘st}

—(b—m), (Vn,m €N, m > n).
|sin £|
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The special cases of these inequalities were proved by G.K. Lebég for
k*, s > 0 (see []). Similarly, the results of Theorer@, were given by Mitri-
novi¢ and Péaric in [2, 3] for sums of typey ;" (=1)* arf (kx) , where again
f(x) =sinzor f (z) = cosz.

The sequencéu, } is said to becomplex semiconveK there exists a cone
K (6), such thatA? (Z—:) € K () or A? (urby) € K (0), where{b,} is a
positive nondecreasing sequence. k0« 1, the sequencéu,} shall be called
acomplex convex sequence N

In this paper we shall give some estimates for cosine and sine polynomials Tr.;;”gﬁ;ﬁﬂ%?fﬁfmimh
with complex semi-convex and complex convex coefficients. Special Coefficients
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Theorem 2.1. Let {z;} be a sequence of complex numbers such that

max ‘Zj:p {;:i zk‘. Further, let {b;} be a positive nondecreasing se-

n<p<gsm
quence. Ifu} is a sequence of complex numbers such ﬁfa(;”—:) € K(0),
then

m
E U2k
k=n

1 Um—1 bm Unp
< — il
<t (o) o Gt eamale G )

(Vn,m eN, m > n).

Proof. Let us estimate the subn’;" by.z.

Since ‘
m m 7
sz S Z 2k S A7
k=n j=n+1 |k=n
we obtain
Zbkzk = anZIH' Z (Z Zk) (bj — bj-1)
k=n k=n j=n+1 \k=j
<o |zl + D D (b —bi)
k=n j=n+1 | k=j
(*) < A(by + by, — by) = Aby,.
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IN

=A {]um| +b,,
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]_ um—l bm u’n
<A 1+—— | A Al — :
a @umem( " 039)' (bm1>‘+0059‘ (bn)H

[

Theorem 2.2. Let {z;} and {b;} be defined as in Theorethl If {u;} is a
sequence of complex numbers such thatu,b,) € K (), then

E Uk Rk

k=n

< [l 027 (14 255 ) 12 (b 12 st
(Vn,m eN, m > n).

Proof. The sequencéb; '} is nonincreasing, so front) we get

< Ab '
Now, we have:
i _ fj ueh) b
= |unbn Zb 2+ Z (Zb zk> (ujb; — u;j_1b;_1)
j=n+1 \k=j
= lupby, Zb 2 — ZlA w;_1bj_4 Zkzb,;lzk
j=nt —_—
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b,) Z b2k = A (Upabmo1) D> byt

r=n k=r
7 m
< |up| by Zb 2| + Z ‘AQ uj_1bj_1) ZZbglzk
j=n+1 r=n k=r
+ | A (unby) Zb 2k + | A (Um—1bm—1) ZZbglzk|
k=n r=n k=r
m—1
< fun| boAby "t + Abt Y A% (uj1bj1)| + Aby A (unby)]
j=n+1

+Ab;1|A (Um 1bm 1)|

Z A2 U] 1b] 1

j=n+1

+ 0, A (unby)| + 0,1 A (um_lbm_l)@

—1

<A

=A |un| + |A (Unbpn) — A (Upp—1by—1)|

<A :|un| + b, (1 + L) (|A (unby)| + 1A (um_lbm_1)|)} :
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Lemma 2.3. Forall p,q € N, p < ¢, the following inequalities hold

q J
- — 2
(2.1) SN et <P okm, k=0,41,42,..,
P 2sin” 3
1< ko q—p+2
i=p k=l 2

k=0+1,42, ... .

Proof. It is sufficient to prove the first inequality, since the second inequality
can be proved analogously.

9 J q i(j—l+1)z _ q
ikx| __ ilxe
D2 M=t
Jj=p k=l Jj=p
1 1 LI
ijr (o
o |ei$ _ 1| ei(l—Dz Ze (q p+ 1)
Jj=p
_ 1 ‘ei(q—p—s-l) — 1‘ g—p+1
~ [2sinZ| e — 1 |281n§
2 —p+1 —p+2
S Zx—i_q -pZm :q 'pr'
4 sin 5 2sin 5 2sin 5
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By putting z;, = exp (ikz) in Theorem2.1and Theoren?.2 and using the
inequality @.1) of the above lemma, we have:

Theorem 2.4. (i) Let{b;} and{u;} be defined as in Theoretl Then

Z uy exp (ikx)
k=n

m_n+2 1 um—]_ bm un
< ——— |um| + b |1+ — | |A Al — ],
~ 2sin’2 {|u I+ ( +COS€>‘ (bm_l)‘+cose (bn>H

(Vn,m €N, m >n).

(i) Let{b,} and{u;} be defined as in Theorem2. Then

Z uy exp (ikx)
k=n

<m—n—|—2

— . 2:2
2sin 5

1
il 0 (1 2o ) (1 (b ) 418 (b))
(Vn,m €N, m >n).
In both cases # 2kw, k=0,+1,+2,...

Applying the known inequalitieRe z < |z| andlm z < |z| for z € C, we
obtain the following result:

Theorem 2.5.Letx # 2kwfork =0,+1,£2,....
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(i) Let{bx} and{u;} be defined as in Theoretnl Then
Z urf (k)
k=n

m—n+2 1 Upp—1 bm Un
< —— ||um| +bom [ 1+ — | |A Al — I,
- 281112% {|u I+ ( +COSQ>‘ (bm_l)‘+c050 (%)H

(Vn,m €N, m >n).
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Special Coefficients

Zivorad Tomovski

—n42 1 Title Page
1
<5 2sin® 2 [’u"’ o ( cos 0) (12 (nbo) | + A (mabm-)l) | Contents
(Vn,m €N, m >n). <« 33
Applying inequality £.2) of Lemma2.3, we obtain the following results: < >
Theorem 2.6.Letx # (2k + 1) wfork =0,£1,£2,... and letz — f (z) be Go Back
defined as in Theoret5. Close
(i) If {bx} and{u;} are defined as in Theoretnl, then e
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m—n+2 1 Upp—1 bm Un
< ———|up| + b [ 1+ — | |A A=l
~ 2cos? 3 {]u I+ ( +cos€>‘ (bml)‘+c089 (bn>H

(Vn,m €N, m >n).

(i) If {bx} and{u;} are defined as in Theoref2, then

> (D unf (ka)

k=n

m-—n-—+2 B 1

T2cos2 L |:|Un| + bt (1 + m) (JA (unbn)| + |A (um_lbm_l)D] 7

(Vn,m eN, m > n).

Forb, = 1, we obtain the following theorem.

Theorem 2.7.Let {u;} be a complex convex sequence.

() If x #2krfork =0,4+1,4+2,..., then we have:

(Vn,m eN, m > n).
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(i) Ifz# (2k+1)xfork =0,+£1,£2,..., then we have:

m

—n 42
g—n[yunH(lJr

2cos?2 Z cos 6

) (Aun] + A1)
2

(Vn,m €N, m >n).
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