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ABSTRACT. Generalizations of the classical and perturbed trapezoid inequalities are developed
using a new mean value theorem for the remainder in Taylor's formula. The resulting inequalities
for N-times differentiable mappings are sharp.
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1. INTRODUCTION

In the literature on numerical integration, see for examiple [12], [13], the following estimation
is well known as the trapezoid inequality:

fO)+fl@ 1 "
_b—a/a f(x)dx

b—a)
<20 qup |7 (@)
z€(a,b)

2

where the mapping : [a,b] — R is twice differentiable on the intervé, b), with the second
derivative bounded ofu, b) .
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2 A. . KECHRINIOTIS AND N. D. ASSIMAKIS

In [3] N. Barnett and S. Dragomir proved an inequality fortime differentiable functions
which forn = 1 takes the following form:

f(a) + £ (b)
5 b_a/f )dr| < =),

where f : [a,b] — R is an absolutely continuous mapping @nb| such that—co < v <
f'(x) <T < oo, Vz € (a,b) . In [15] N. Ujevic reproved the above result via a generalization
of Ostrowski’s inequality.

For more results on the trapezoid inequality and their applications we refer tol[4], [9], [11],
[12].

In [10] S. Dragomir et al. obtained the following perturbed trapezoid inequality involving the
Griss inequality:

/f yar -7 >+f<> (f' (b) = f'(a)) (b~ a)

b—a

’b—a 12

< o5 (0 =) (b - ),
where f is twice differentiable on the intervakh, b), with the second derivative bounded on
(a,0), and~y, = infoc(ap) [ (), T2 = sup,ep [ (). In [6] P. Cerone and S. Dragomir
improved the above inequality replacing the constgnby ﬁ and in [8] X. Cheng and J.

Sun replaced the constag{L by . For more results concerning the perturbed trapezoid
inequality we refer to the papers of N Barnett and S. Dragomirl[1], [2], as well as, to the paper
of N. Ujevic [14].

In [5] P. Cerone and S. Dragomir obtained some general three-point integral inequalities
for n—times differentiable functions, involving two functioms 5 : [a,b] — [a,b] such that
a(z) < zandf(x) > xforall x € [a,b]. As special cases (fak (z) := z, 3 (z) = x)
trapezoid type inequalities far—times differentiable functions result. For more trapezoid-type
inequalities involving:—times differentiable functions we refer {a [6], [7], [16].

In this paper we state a mean value Theorem for the remainder in Taylor’s formula. We then
develop a sharp general integral inequality fortimes differentiable mappings involving a
real parameter. Three generalizations of the classical trapezoid inequality and two generaliza-
tions of the perturbed trapezoid inequality are obtained. The resulting inequalities fiones
differentiable mappings are sharp.

2. MEAN VALUE THEOREM

For convenience we set

n

R (frah)=£0) -3 O 0 ).

=0
We prove the following mean value Theorem for the remainder in Taylor’s formula:
Theorem 2.1.Let f, g € C"[a,b] such thatf*+1 ¢(»*1) are integrable and bounded on

(a,b) . Assume thay™+Y (z) > 0 for all z € (a,b). Then for anyt € [a, b] and any positive
valued mappings, 3 : [a,b] — R, the following estimation holds:

o (t) R (fit,0) + (=1)"" B(t) Ru (f3t,0)

(21) — n+1
a(t) By (g;1,0) + (=1)"" 5 (1) Ry (9;1, )
z)
)’

/\

IN

M,

. (n+1) (n+1)
Whel‘em = lnfxe(a7b) —g<”+1)E§§’ M = supxe(&b) <n+l)E$
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Proof. Sinceg"*"), a, 3 are positive valued functions dia, b) , we clearly have that for all
t € |a, b] the following inequality holds:

o (1) / (b— )" g™ (2)dx + B (2) / (o —a)" ¢ () da > 0,

which, by using the Taylor’s formula with an integral remainder, can be rewritten in the follow-
ing form:

(2.2) a(t) Ry (g;t,b) + (=1)"" 3 () R, (g;t,a) > 0.
Moreover, we have

o (1) /1t (b= )" g () <£§:%;Eg _ m) da
0 [ @-arge e (L - n) 2o

+

)

or equivalently
b a
(23) o) / (b—2)" " () da + (—1)"™ (1) / (a - 2)" 1 (2) da

> m (a o [ (b )" g0 (@) e+ (1) B (1) [ a0 daz) .

Using the Taylor’s formula with an integral remaindg,3) can be rewritten in the following
form:

(2.4) o (t) Ro (f1£.0) + (=1)""" B() Ra (f3t.0)

> m (o (t) Ry (g:1.6) + (~1)"" 3.(0) Ry (g:1.0))
Dividing by we get
25) ARt + (<) B Ra (i)

T a(t) Ry (g:t,0) + ()" B () Ry (g5t.a)
On the other hand, we have

o (t) /t (b )" g () (M - %) dz

a0 [ (- ) g (2) (M _ Jgfi—;gg) >0

or equivalently

(2.6)  a(t) R (fit;0) + (=) (1) Ra (fit,0)
(

Dividing by we get
o (t) Ru (fit,0) + (=)™ B (1) Ry (fit,0)

(2.7) — <M.
a(t) By (g;t,0) + (=1)"" 3 (1) Ru (g:t, a)
Combining([2.5) with we get(2.1. O
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Theorem 2.2.Let f, g € C™[a,b] such thatf™*+Y ¢+ are integrable and bounded on
(a,b) . Assume thag™+") (z) > 0 for all 2 € (a,b). Then for anyt € [a, b] and any integrable
and positive valuated mappings : [a,b] — R, the following estimation holds:

<ﬁm<><fu»< 1™ B () Ry (fit,a)) dt
=y (@(®) Ra(g:6,0) + (1) B(8) Ra (g8, 0)) dt

wherem, M are as in Theore@.l.

Proof. Integrating(2.2), (2.4), (2.6) in Theorenj 2./l ovefu, b] we get

(2.8)

Y

(2.9) [ @0 Ra(git0) + (1" 5 0) R (git0)) i >
and
210)  m / 2 (g:,) + (1) B(1) Ry (g5,0)) dt
</(<> W (f50.0) + (~1)" B(0) o (f:t, ) b
<M / 2 (g:4.0) + (1) 3(8) Ry (g:1,0)) d.
Dividing by (2.9) we get(2.8) . O

3. GENERAL INTEGRAL INEQUALITIES

For convenience we denote

Yo (f) :== inf fn () Ly (f) := sup ) (x).

z€(a,b) z€(a,b)

For our purpose we shall use Theorgms 2.1[and 2.2, as well as, an identity:

Lemma 3.1. Let f : [a,b] — R be a mapping such that™ is integrable on[a, b] . Then for
any positive numbes the following identity holds:

L ’ "Ry (fix,a)) do
@Y G [ (R = (<) Ry (fira)d

MLDIGAID /f )+ pf () + (-1 £ (a)

)L ) * (4 .

Proof. Using the analytical form of the remainder in Taylor’s formula we have

G | (R e+ () Ry (i) de
:pf(b)—i-(—l)nH (a) b_a Z/ b—x k! -1)"" (a — ) f(k)(l')dx

(3.2)

=pf(b)+ (=1)"" £ (
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where

k!
Fork > 1, using integration by parts we obtain

()P0 4 ) e

I, .= /b plb— x)k (D" (e :B)kf(k) (x)dz, (k=0,1,....,n).

(3.3) Iy — I = — i

Further, the following identity holds:

(3.4) Y hi=n+1I+> (n+1—k) (I — ).
k=0 k=1

Combining(3.2)) with (3.4)) and(3.3) we get

(3.5)

| (0Ra (fi2.) 5 (-1 By (fi,) e
= o0+ () oy - O CUT) g

. Z Y o Vi Ll g) ol @) (e
k=1 '

1
(b—a)

Replacingk by & + 1 in (3.5) , we get(3.1]) . O

Theorem 3.2.Let f € C™ [a, b] such thatf"+1) is integrable and bounded dpa, b) . Then for
any positive numbes the following estimation holds:
(1+p)(b—a)"
nt2imeny )
__1\n+l b _1\ntl
< _pﬂzb( 1)) / F(@)ds + pf (b)) + (=" f(a)
a4 .

(3.6)

(n+1)
S (=R DO @)+ pf O (@)
2 i) (k+ 1) o

(L+p)(b—a)™"
(n+2)!(n+1)

The inequalities ir{3.6)) are sharp.

Proof. Choosingg (z) = 2™, a (z) = p, 8(z) = 1in (2.1) in Theorenj 2]1, and then using
the identityR,, (¢; a,z) = (z — a)""" we get

b—t)" 4 (=) (0 — )"
OED RS T W

< pR, (fit,0) + (—1)"" R, (fit,a)

_ b=t~ (= )"
- (n+1)!

Fn+l(f)7

(3.7)

FnJrl (f) )
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forall t € [a,b] . Integrating(3.7)) with respect tad from a to b we have

b—a)"!
59 () e ()
b
< [ R (5 0) + (C1) R () de
(b o a)n—H
< (L+p) mrnﬂ (f)-

Setting (3.1) (Lemma[3.1) in(3.8) and dividing the resulting estimation Ky, + 1), we get
(3.6). Moreover, choosing (z) = z™*! in (3.6]), the equality holds. Therefore the inequalities
in (3.6]) are sharp. O

Remark 3.3. Applying Theoreni 32 fom = 1 we get immediately the classical trapezoid
inequality:

(3.9) (b Iza) Y (f) < / (b) / f(x ) [y (f),

wheref : [a,b] — R is continuously differentiable ofa, b] and twice differentiable ofu, b),
with the second derivativg” integrable and bounded dn, b) .

Remark 3.4. Theorenj 3.R for = 2 becomes the following form:

(1+P)7(25—a)V o) dr + (2p — 1)f(a)3—(2—p)f(b)
Jr(jpf’()(b_a)
<(1+p)(b—a)31_‘3<f)7

- 72
wherep € R, f € C?[a,b] and such thaf” is bounded and integrable da, b) .

Theorem 3.5. Let f, g be two mappings as in Theorém|2.2. Then for aryR ; the following
estimation holds:
L (f;p,a,b)
(3.10) m< =L <M,
I, (g; p, a, D)

f(n+1)(z) f(n+1)(z)

wherem = infme(a’b) g(nJr—l)(x), M = Supme(a’b) g(nJr—l)(I), and

1 n+1 b b 1 n+1
L (fip,a,b) = ——'OJr(b(_(z) / f(x)dx+pf( )—2754_1) /(@)
n—1 n+k+1
(n—k) (=1)" f® (b) + pf™ (a) K
Tt (k+1)! (b=a)”.
Proof. Settinga (z) = p, f(z) = 1in (2.1) of Theorenf 2.]1, and using the identify.1)) in
Lemmg 3.1 we gef3.9) . 0O
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4. GENERALIZED CLASSICAL TRAPEZOID INEQUALITIES

Using the inequality(3.6) in Theorem 3.2 we obtain two generalizations of the classical
trapezoid inequality, which will be used in the last section. Moreover, combining both general-
izations we obtain a third generalization of the classical trapezoid inequality.

Theorem 4.1.Let f € C" [a, b] such thatf ") is integrable and bounded o, b) . Suppose
n is odd. Then the following estimation holds:

1

(4.1) (n+muw+nw—av“mﬁmﬁ
o4 O @) )(ﬂ)
L) w—a>(ﬂ“<>+<—n5ﬂ“w0
2(n+1) (k+1)!

k=1

: (n+2)!(n+1) (b= Lo (7).

The inequalities inf4.1)) are sharp.

Proof. From (3.6) in Theorenj 3.2 by = 1, obviously we get[4.1)) . O

Theorem 4.2.Let f € C™ [a, b] such thatf (") is integrable and bounded o, b) . Suppose
n is odd. Then we have

—a n+1
42) A ()
g gy (CVO®) + 9 @) (- a)f
S—b_al«”@dx+2; n (k+2)!
< 2751)(;_'(_1)3)' I‘nJrl (f) :

The inequalities inf4.2)) are sharp.

Proof. Letm = n+1. Thenm is an even integer. Consider the mapping [a, b] — R, defined
via F (z) := [” f (t) dt. Then we clearly have thdt € C™ [a, b] and F(™ ") is integrable and
bounded or(a b). Now, applying inequality{3.6)) in Theorenj 3.p t&*' by choosing = 1, we
readily get

(m2ib2_)168n+ py e () < _E:;_ 3 (F(6) = F (@)
= (m— k) (=1 E® (b)) + F®) (a)
T it 1) (b= a)*
20— _p (),
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or equivalently,
9 (b o a)m+1

mroim=1
= (<—1>“f“ 470 () + 1470 (@)) (b - o)
< m—i—l/f d:c—l—XQ ]
2(b—a)" r (/).

<
“(m+2)!(m+1)
Multiplying the previous inequality byﬂ%, and then usingr = n + 1 we have

2 (b . a)n+1
e )
/ RPN URS ) (0 D @)+ £ (@) (- )
= b-a — n (k+1)!
(b . a)nJrl
WFnH (),

and replacing: by k& + 1we get({4.2) . Moreover, choosing (z) = z"** in (4.2)), the equality
holds. So, the inequalities are sharp. O

Remark 4.3. Applying Theorenj 4]2 for = 1 we again obtain the classical trapezoid inequal-
ity (3.9) in Remark 3.B.
Remark 4.4. A simple calculation yleld +3), < foranyn > 1. Thus inequality

n+2) (0 1)
in Theoren 4.p is better thaf.1]) in Theore . Nevertheless inequalftyl)) is useful,

because suitable combinations(dfl)), (4.2)) lead to some interesting results, as for example in
the following theorem.

Theorem 4.5. Let n be an odd integer such that> 3. Let f € C"2[a, b] such thatf"~Y is
integrable and bounded af, b) . Then the following inequalities hold

12(b—a)"

03 g e R D9 () = 9T ()
b 12n(n+1) Xn(k+2) -2
S/a J@)de = o =) 2= 2t

(n—k=2) ((=D" 9 ) + 9 (@)) (b - )"
(k4 4)!

20+ Tha (f) =n(n+3)ma(f))

X

12(b—a)"
“(n+3)(n—-2)(n—-1)
The inequalities irf4.3)) are sharp.

Proof. We set the mapping' : [a,b] — R by
x t
(4.4) F(x) ::/ / f(s)dsdt.
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Then we have thaf' € C™[a,b] and F"*V is bounded and integrable dn,b). Applying

the inequalities}4.2) in Theoren] 42 and(4.1)) in Theoren{ 41 taF" we respectively get the
following inequalities:

— )"t b a
(4.5) M%H (F) < — ! / F(z)dz + Fla)+ F(b)

(n+3)n b—a 2
21— gy (CDFO @)+ FO (@) (0 - o)
T (i +2)]
< 2@;;;, Ly (F)
and
(b—a)"t!
(4.6) mr iy )

b—a 2
gy G- (F @)+ (-)F PO (1)
;2(71—1—1) (k+1)!
(b—a)"™
TS ITES VI

Multiplying by (—1) and adding the resulting estimation wigh5) , we get

(b— a)n+1 2 1
4.7) (n n 2)' (n (TL T 3) Tn+1 (F) - n——l—anH (F))
"17*—2<”—@(Pwﬂwww+ﬂ@mww—@“1

Pﬂ

“2n(n+1) (k+2)!

(b - a)”“ 2 1
< (gt ()= e ()

Dividing the last estimation witlib — a) and splitting the first term of the sum we have

@8 U (e () - T ()

n+2)! \n(n+3 n+
(=2 (=) (F () - F ()
- 12n(n+1)
1 oo (=K (D FR 0) + FO (@) (0 - a)
_Z;%Mn+m (k+2)!
(b—a)" 1

IN

2
(n+2)! (n (n+ 3)Fn+1 (F) — ?%H (F)) .
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Finally, setting(#.4) in (4.7) and multiplying the resulting estimation by?4* 1 we get

12(b—a)"

n+3)(n—2) (n—1) 2(n+1) - (f) —n(n+3)Luat (£))
12n (n+1)
/ f ) dz = (n—2)(n—1)
S opk—g (=R (D DO+ (@) 6 )
" 2n(n+1 (k +2)!
12(b—a)"

“n+3)(n—2)(n—1) QM+ (f) =n(n+3)ym-1(f),

and replacing: by & + 2 the inequalities ir{4.3)) are obtained.
Moreover, choosing (z) = z"~! in (4.3), the equality holds. So, the inequalities(ih3))
are sharp. O

Applying Theorenp 45 for. = 3 we immediately obtain the following result:

Corollary 4.6. Let f € C* [a, b] such thatf” is integrable and bounded di, b) . Then,

w9 - s [ @ - 1020

<<b—a>

< T, (1) - 9w ().

Remark 4.7. Let f be as in Corollary 4]6. If, (f) > $I(f) then from(L8) we get the

following inequality:
’ fla)+ [ (b)
b—a/a f(z)de < —

5. GENERALIZED PERTURBED TRAPEZOID |NEQUALITIES

In this section, using the results of the two previous sections, several perturbed trapezoid
inequalities are obtained involving-times differentiable functions.

Theorem 5.1.Let f € C™[a, b] such thatf"*+Y is integrable and bounded df, b) . Then the
following estimations are valid:

(b—a)"" (=)™ (f (a) +nf (b))
CL G mrn s )/ /(@) de+ (n+1)
S~ (= k) ()" 0 )
+k:1 n+1)  (k+1) (b=
(b - a)n 1—‘n+1 (f) )

=m+2)l(n+1)
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(b—a)"" 1 ’ nf (a) + f(b)
52 (n+2)!(n+1)%“(f>S_(b—a)/af("”")d T
« (n—k) f¥ (a) '
+kz_; CESICESIA
(b—a)"™
CEDICES R
Further, if n is an even positive integer, then
(5.3) ‘ ) dp + LD TS0 )+f<)
— (n—k) f<k><a> +(=1)" f® (v) ‘
+k:12n+1) (k+1) (b—a)
(b—a)""

(o1 (f) = a1 () -

The inequalities inf5.1]) and(5.2)) are sharp.

Proof. Taking the limit of (3.6) in Theorenj 3.2 ap — 0 we obtain(5.1) . Further forp > 1,
dividing by (p + (—1)”“) and then obtaining the limit from the resulting estimation as
p — oo we get(5.2) . Now, letn be an even integer. Then multiplyirfg.2)) by (—1), adding
the resulting inequality witt{s.1]) and finally multiplying the obtained estimation by%) we
easily get(5.3). O

Remark 5.2. Applying Theorenj 5]1 for. = 2 we obtain the following inequalities:

—CL3 b a /
0y e [ a0 S0,

72

b / — f'(q
54 ‘ 1a/f<x)dx_f<a>;f<b>+f<b> @) 4

(b—a)’

<
- 144

(Fs(f)—%(f)),

wheref € C?[a, b] and is such that”” is bounded and integrable @n b] . Therefore, inequality
can be regarded as a Gruss type generalization of the perturbed trapezoid inequality.
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Theorem 5.3.Let f € C™ [a, b] such thatf ") is integrable and bounded o, b) . Suppose
n is odd and greater tham. Then the following estimation holds:

2(b—a)"" (n43) Y1 () = (n+ D Tuis ()

) 3 (n+ (=2
< /f ()erf()
S (n—k)(n—1- )(f(’“() (— 1)kf(k)(b)>(b_a)k
Ty (k + 2)!

k=1

_ 20— )" (n+3) Tuyi (f) = (0 + D 31 (f))
- (n+3)!(n+1)(n—2) '

The inequalities inf5.5|) are sharp.

Proof. Multiplying in Theoren{ 4.2 by."; and (1) in Theorenf 4.1 by-.2; and then
adding the resulting estimations we see that the last term of the sum In the intermediate part of
the obtained inequality is vanishing, and so, after some algebra, wg.ggtFinally, choosing

f(z) == 2" in (5.5), a simple calculation verifies that the equalities hold. Therefore, the
inequalities in(5.5]) are sharp. O

Applying Theoreni 53 for. = 3 we get immediately the following result.

Corollary 5.4. Let f € C?[a,b] such thatf¥) is integrable and bounded o, b) . Then the
following estimation holds:

(b—a)4<374(f)—2r4(f))
—b_ /f PO (UES (O INEURS JOICRD

(56)

12

< % (b—a)" (374 (f) — 274 (f)) -

The inequalities inf5.6|) are sharp.
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