Journal of Inequalities in Pure and Applied Mathematics

GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR'S FORMULA

A.I. KECHRINIOTIS AND N.D. ASSIMAKIS

Department of Electronics Technological Educational Institute of Lamia Greece.

EMail: kechrin@teilam.gr

Department of Electronics

Technological Educational Institute of Lamia

Greece.

Department of Informatics with Applications to Biomedicine

University of Central Greece

Greece

EMail: assimakis@teilam.gr

volume 7, issue 3, article 90, 2006.

Received 01 April, 2005; accepted 10 May, 2006.

Communicated by: P. Cerone

©2000 Victoria University ISSN (electronic): 1443-5756 101-05

Abstract

Generalizations of the classical and perturbed trapezoid inequalities are developed using a new mean value theorem for the remainder in Taylor's formula. The resulting inequalities for N-times differentiable mappings are sharp.

2000 Mathematics Subject Classification: 26D15.

Key words: Classical trapezoid inequality, Perturbed trapezoid inequality, Mean value theorem, Generalizations.

We thank Prof. P. Cerone for his constructive and helpful suggestions.

Contents

1	Introduction	3
2	Mean Value Theorem	5
3	General Integral Inequalities	9
4	Generalized Classical Trapezoid Inequalities	14
5	Generalized Perturbed Trapezoid Inequalities	22
Ref	ferences	

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

1. Introduction

In the literature on numerical integration, see for example [12], [13], the following estimation is well known as the trapezoid inequality:

$$\left| \frac{f(b) + f(a)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{(b - a)^{2}}{12} \sup_{x \in (a, b)} |f''(x)|,$$

where the mapping $f:[a,b]\to\mathbb{R}$ is twice differentiable on the interval (a,b), with the second derivative bounded on (a,b).

In [3] N. Barnett and S. Dragomir proved an inequality for n-time differentiable functions which for n = 1 takes the following form:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \leq \frac{b - a}{8} (\Gamma - \gamma),$$

where $f:[a,b]\to\mathbb{R}$ is an absolutely continuous mapping on [a,b] such that $-\infty<\gamma\le f'(x)\le\Gamma<\infty, \ \forall x\in(a,b)$. In [15] N. Ujević reproved the above result via a generalization of Ostrowski's inequality.

For more results on the trapezoid inequality and their applications we refer to [4], [9], [11], [12].

In [10] S. Dragomir et al. obtained the following perturbed trapezoid inequality involving the Grüss inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{f(b) + f(a)}{2} + \frac{(f'(b) - f'(a))(b-a)}{12} \right| \\ \leq \frac{1}{32} (\Gamma_{2} - \gamma_{2})(b-a)^{2},$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 3 of 27

where f is twice differentiable on the interval (a,b), with the second derivative bounded on (a,b), and $\gamma_2:=\inf_{x\in(a,b)}f''(x)$, $\Gamma_2:\sup_{x\in(a,b)}f''(x)$. In [6] P. Cerone and S. Dragomir improved the above inequality replacing the constant $\frac{1}{32}$ by $\frac{1}{24\sqrt{5}}$ and in [8] X. Cheng and J. Sun replaced the constant $\frac{1}{24\sqrt{5}}$ by $\frac{1}{36\sqrt{3}}$. For more results concerning the perturbed trapezoid inequality we refer to the papers of N. Barnett and S. Dragomir [1], [2], as well as, to the paper of N. Ujević [14].

In [5] P. Cerone and S. Dragomir obtained some general three-point integral inequalities for n-times differentiable functions, involving two functions $\alpha,\beta:[a,b]\to[a,b]$ such that $\alpha(x)\leq x$ and $\beta(x)\geq x$ for all $x\in[a,b]$. As special cases (for $\alpha(x):=x,\,\beta(x):=x$) trapezoid type inequalities for n-times differentiable functions result. For more trapezoid-type inequalities involving n-times differentiable functions we refer to [6], [7], [16].

In this paper we state a mean value Theorem for the remainder in Taylor's formula. We then develop a sharp general integral inequality for n-times differentiable mappings involving a real parameter. Three generalizations of the classical trapezoid inequality and two generalizations of the perturbed trapezoid inequality are obtained. The resulting inequalities for n-times differentiable mappings are sharp.

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

2. Mean Value Theorem

For convenience we set

$$R_n(f; a, b) := f(b) - \sum_{i=0}^n \frac{(b-a)^i}{i!} f^{(i)}(a).$$

We prove the following mean value Theorem for the remainder in Taylor's formula:

Theorem 2.1. Let $f, g \in C^n[a,b]$ such that $f^{(n+1)}, g^{(n+1)}$ are integrable and bounded on (a,b). Assume that $g^{(n+1)}(x) > 0$ for all $x \in (a,b)$. Then for any $t \in [a,b]$ and any positive valued mappings $\alpha, \beta : [a,b] \to \mathbb{R}$, the following estimation holds:

(2.1)
$$m \leq \frac{\alpha(t) R_n(f;t,b) + (-1)^{n+1} \beta(t) R_n(f;t,a)}{\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a)} \leq M,$$

where
$$m := \inf_{x \in (a,b)} \frac{f^{(n+1)}(x)}{g^{(n+1)}(x)}$$
, $M := \sup_{x \in (a,b)} \frac{f^{(n+1)}(x)}{g^{(n+1)}(x)}$.

Proof. Since $g^{(n+1)}$, α , β are positive valued functions on (a,b), we clearly have that for all $t \in [a,b]$ the following inequality holds:

$$\alpha(t) \int_{t}^{b} (b-x)^{n} g^{(n+1)}(x) dx + \beta(t) \int_{a}^{t} (x-a)^{n} g^{(n+1)}(x) dx > 0,$$

which, by using the Taylor's formula with an integral remainder, can be rewritten in the following form:

(2.2)
$$\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a) > 0.$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 5 of 27

Moreover, we have

$$\alpha(t) \int_{t}^{b} (b-x)^{n} g^{(n+1)}(x) \left(\frac{f^{(n+1)}(x)}{g^{(n+1)}(x)} - m \right) dx + \beta(t) \int_{a}^{t} (x-a)^{n} g^{(n+1)}(x) \left(\frac{f^{(n+1)}(x)}{g^{(n+1)}(x)} - m \right) \ge 0,$$

or equivalently

$$(2.3) \quad \alpha(t) \int_{t}^{b} (b-x)^{n} f^{(n+1)}(x) dx + (-1)^{n+1} \beta(t) \int_{t}^{a} (a-x)^{n} f^{(n+1)}(x) dx \geq m \left(\alpha(t) \int_{t}^{b} (b-x)^{n} g^{(n+1)}(x) dx + (-1)^{n+1} \beta(t) \int_{t}^{a} (a-x)^{n} g^{(n+1)}(x) dx\right).$$

Using the Taylor's formula with an integral remainder, (2.3) can be rewritten in the following form:

(2.4)
$$\alpha(t) R_n(f;t,b) + (-1)^{n+1} \beta(t) R_n(f;t,a)$$

 $\geq m \left(\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a)\right).$

Dividing (2.4) by (2.2) we get

$$(2.5) m \leq \frac{\alpha(t) R_n(f;t,b) + (-1)^{n+1} \beta(t) R_n(f;t,a)}{\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a)}.$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Contents

Contents

Go Back

Close

Quit

Page 6 of 27

On the other hand, we have

$$\alpha(t) \int_{t}^{b} (b-x)^{n} g^{(n+1)}(x) \left(M - \frac{f^{(n+1)}(x)}{g^{(n+1)}(x)} \right) dx + \beta(t) \int_{a}^{t} (x-a)^{n} g^{(n+1)}(x) \left(M - \frac{f^{(n+1)}(x)}{g^{(n+1)}(x)} \right) \ge 0.$$

or equivalently

(2.6)
$$\alpha(t) R_n(f;t,b) + (-1)^{n+1} \beta(t) R_n(f;t,a)$$

 $\leq M(\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a)).$

Dividing (2.6) by (2.2) we get

(2.7)
$$\frac{\alpha(t) R_n(f;t,b) + (-1)^{n+1} \beta(t) R_n(f;t,a)}{\alpha(t) R_n(g;t,b) + (-1)^{n+1} \beta(t) R_n(g;t,a)} \le M.$$

Combining (2.5) with (2.7) we get (2.1).

Theorem 2.2. Let $f, g \in C^n[a,b]$ such that $f^{(n+1)}, g^{(n+1)}$ are integrable and bounded on (a,b). Assume that $g^{(n+1)}(x) > 0$ for all $x \in (a,b)$. Then for any $t \in [a,b]$ and any integrable and positive valuated mappings $\alpha, \beta : [a,b] \to \mathbb{R}_+$, the following estimation holds:

$$(2.8) m \leq \frac{\int_{a}^{b} \left(\alpha(t) R_{n}(f;t,b) + (-1)^{n+1} \beta(t) R_{n}(f;t,a)\right) dt}{\int_{a}^{b} \left(\alpha(t) R_{n}(g;t,b) + (-1)^{n+1} \beta(t) R_{n}(g;t,a)\right) dt} \leq M,$$

where m, M are as in Theorem 2.1.

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 7 of 27

Proof. Integrating (2.2), (2.4), (2.6) in Theorem 2.1 over [a, b] we get

(2.9)
$$\int_{a}^{b} \left(\alpha(t) R_{n}(g;t,b) + (-1)^{n+1} \beta(t) R_{n}(g;t,a) \right) dt > 0,$$

and

$$(2.10) m \int_{a}^{b} (\alpha(t) R_{n}(g;t,b) + (-1)^{n+1} \beta(t) R_{n}(g;t,a)) dt$$

$$\leq \int_{a}^{b} (\alpha(t) R_{n}(f;t,b) + (-1)^{n+1} \beta(t) R_{n}(f;t,a)) dt$$

$$\leq M \int_{a}^{b} (\alpha(t) R_{n}(g;t,b) + (-1)^{n+1} \beta(t) R_{n}(g;t,a)) dt.$$

Dividing (2.10) by (2.9) we get (2.8).

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

3. General Integral Inequalities

For convenience we denote

$$\gamma_n(f) := \inf_{x \in (a,b)} f^{(n)}(x), \qquad \Gamma_n(f) := \sup_{x \in (a,b)} f^{(n)}(x).$$

For our purpose we shall use Theorems 2.1 and 2.2, as well as, an identity:

Lemma 3.1. Let $f : [a,b] \to \mathbb{R}$ be a mapping such that $f^{(n)}$ is integrable on [a,b]. Then for any positive number ρ the following identity holds:

$$(3.1) \frac{1}{(b-a)} \int_{a}^{b} \left(\rho R_{n}(f;x,b) + (-1)^{n+1} R_{n}(f;x,a)\right) dx$$

$$= -\frac{(n+1)\left(\rho + (-1)^{n+1}\right)}{b-a} \int_{a}^{b} f(x) dx + \rho f(b) + (-1)^{n+1} f(a)$$

$$+ \sum_{k=0}^{n-1} (n-k) \frac{(-1)^{n+k+1} f^{(k)}(b) + \rho f^{(k)}(a)}{(k+1)!} (b-a)^{k+1}.$$

Proof. Using the analytical form of the remainder in Taylor's formula we have

(3.2)
$$\frac{1}{(b-a)} \int_{a}^{b} \left(\rho R_{n} (f; x, b) + (-1)^{n+1} R_{n} (f; x, a) \right) dx$$
$$= \rho f (b) + (-1)^{n+1} f (a)$$
$$- \frac{1}{(b-a)} \sum_{k=0}^{n} \int_{a}^{b} \frac{\rho (b-x)^{k} + (-1)^{n+1} (a-x)^{k}}{k!} f^{(k)} (x) dx$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Close

Quit

Page 9 of 27

$$= \rho f(b) + (-1)^{n+1} f(a) - \frac{1}{(b-a)} \sum_{k=0}^{n} I_k,$$

where

$$I_k := \int_a^b \frac{\rho (b-x)^k + (-1)^{n+1} (a-x)^k}{k!} f^{(k)}(x) dx, \quad (k = 0, 1, ..., n).$$

For $k \geq 1$, using integration by parts we obtain

$$(3.3) I_k - I_{k-1} = -\frac{(-1)^{n+k} f^{(k-1)}(b) + \rho f^{(k-1)}(a)}{k!} (b-a)^k.$$

Further, the following identity holds:

(3.4)
$$\sum_{k=0}^{n} I_k = (n+1)I_0 + \sum_{k=1}^{n} (n+1-k)(I_k - I_{k-1}).$$

Combining (3.2) with (3.4) and (3.3) we get

(3.5)
$$\frac{1}{(b-a)} \int_{a}^{b} \left(\rho R_{n} (f; x, b) + (-1)^{n+1} R_{n} (f; x, a) \right) dt$$

$$= \rho f (b) + (-1)^{n+1} f (a) - \frac{(n+1) \left(\rho + (-1)^{n+1} \right)}{b-a} \int_{a}^{b} f (x) dx$$

$$+ \sum_{i=1}^{n} (n+1-k) \frac{(-1)^{n+k} f^{(k-1)} (b) + \rho f^{(k-1)} (a)}{k!} (b-a)^{k}.$$

Replacing k by k + 1 in (3.5), we get (3.1).

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Contents

Contents

Go Back

Close

Quit
Page 10 of 27

Theorem 3.2. Let $f \in C^n[a,b]$ such that $f^{(n+1)}$ is integrable and bounded on (a,b). Then for any positive number ρ the following estimation holds:

$$(3.6) \qquad \frac{(1+\rho)(b-a)^{n+1}}{(n+2)!(n+1)} \gamma_{n+1}(f)$$

$$\leq -\frac{\rho + (-1)^{n+1}}{(b-a)} \int_{a}^{b} f(x) dx + \frac{\rho f(b) + (-1)^{n+1} f(a)}{(n+1)}$$

$$+ \sum_{k=0}^{n-1} \frac{(n-k)}{(n+1)} \frac{(-1)^{n+k+1} f^{(k)}(b) + \rho f^{(k)}(a)}{(k+1)!} (b-a)^{k}$$

$$\leq \frac{(1+\rho)(b-a)^{n+1}}{(n+2)!(n+1)} \Gamma_{n+1}(f),$$

The inequalities in (3.6) are sharp.

Proof. Choosing $g(x) = x^{n+1}$, $\alpha(x) = \rho$, $\beta(x) = 1$ in (2.1) in Theorem 2.1, and then using the identity $R_n(g; a, x) = (x - a)^{n+1}$ we get

(3.7)
$$\frac{\rho(b-t)^{n+1} + (-1)^{n+1} (a-t)^{n+1}}{(n+1)!} \gamma_{n+1}(f)$$

$$\leq \rho R_n(f;t,b) + (-1)^{n+1} R_n(f;t,a)$$

$$\leq \frac{\rho(b-t)^{n+1} + (-1)^{n+1} (a-t)^{n+1}}{(n+1)!} \Gamma_{n+1}(f),$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 11 of 27

for all $t \in [a, b]$. Integrating (3.7) with respect to t from a to b we have

$$(3.8) \qquad (1+\rho)\frac{(b-a)^{n+1}}{(n+2)!}\gamma_{n+1}(f)$$

$$\leq \frac{1}{b-a} \int_{a}^{b} \left(\rho R_{n}(f;t,b) + (-1)^{n+1} R_{n}(f;t,a)\right) dt$$

$$\leq (1+\rho) \frac{(b-a)^{n+1}}{(n+2)!} \Gamma_{n+1}(f).$$

Setting (3.1) (Lemma 3.1) in (3.8) and dividing the resulting estimation by (n+1), we get (3.6). Moreover, choosing $f(x) = x^{n+1}$ in (3.6), the equality holds. Therefore the inequalities in (3.6) are sharp.

Remark 1. Applying Theorem 3.2 for n = 1 we get immediately the classical trapezoid inequality:

(3.9)
$$\frac{(b-a)^{2}}{12}\gamma_{2}(f) \leq \frac{f(b)+f(a)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx \\ \leq \frac{(b-a)^{2}}{12} \Gamma_{2}(f),$$

where $f:[a,b]\to\mathbb{R}$ is continuously differentiable on [a,b] and twice differentiable on (a,b), with the second derivative f'' integrable and bounded on (a,b).

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Close

Quit

Page 12 of 27

Remark 2. Theorem 3.2 for n = 2 becomes the following form:

$$\frac{(1+\rho)(b-a)^{3}}{72}\gamma_{3}(f) \leq \frac{1-\rho}{(b-a)} \int_{a}^{b} f(x) dx + \frac{(2\rho-1)f(a) - (2-\rho)f(b)}{3} + \frac{f'(b) + \rho f'(a)}{6}(b-a) \leq \frac{(1+\rho)(b-a)^{3}}{72} \Gamma_{3}(f),$$

where $\rho \in \mathbb{R}_+$, $f \in C^2[a,b]$ and such that f''' is bounded and integrable on (a,b).

Theorem 3.3. Let f, g be two mappings as in Theorem 2.2. Then for any $\rho \in \mathbb{R}_+$ the following estimation holds:

$$(3.10) m \leq \frac{I_n(f; \rho, a, b)}{I_n(g; \rho, a, b)} \leq M,$$

where $m:=\inf_{x\in(a,b)}\frac{f^{(n+1)}(x)}{g^{(n+1)}(x)}$, $M:=\sup_{x\in(a,b)}\frac{f^{(n+1)}(x)}{g^{(n+1)}(x)}$, and

$$I_n(f;\rho,a,b) := -\frac{\rho + (-1)^{n+1}}{(b-a)} \int_a^b f(x) dx + \frac{\rho f(b) + (-1)^{n+1} f(a)}{(n+1)} + \sum_{k=0}^{n-1} \frac{(n-k)}{(n+1)} \frac{(-1)^{n+k+1} f^{(k)}(b) + \rho f^{(k)}(a)}{(k+1)!} (b-a)^k.$$

Proof. Setting $\alpha(x) = \rho$, $\beta(x) = 1$ in (2.1) of Theorem 2.1, and using the identity (3.1) in Lemma 3.1 we get (3.9).

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 13 of 27

4. Generalized Classical Trapezoid Inequalities

Using the inequality (3.6) in Theorem 3.2 we obtain two generalizations of the classical trapezoid inequality, which will be used in the last section. Moreover, combining both generalizations we obtain a third generalization of the classical trapezoid inequality.

Theorem 4.1. Let $f \in C^n[a,b]$ such that $f^{(n+1)}$ is integrable and bounded on (a,b). Suppose n is odd. Then the following estimation holds:

$$(4.1) \qquad \frac{1}{(n+2)! (n+1)} (b-a)^{n+1} \gamma_{n+1} (f)$$

$$\leq -\frac{1}{b-a} \int_{a}^{b} f(x) dx + \frac{f(b) + f(a)}{2}$$

$$+ \sum_{k=1}^{n-1} \frac{(n-k)}{2(n+1)} \frac{(b-a)^{k} \left(f^{(k)}(a) + (-1)^{k} f^{(k)}(b)\right)}{(k+1)!}$$

$$\leq \frac{1}{(n+2)! (n+1)} (b-a)^{n+1} \Gamma_{n+1} (f).$$

The inequalities in (4.1) are sharp.

Proof. From (3.6) in Theorem 3.2 by $\rho = 1$, obviously we get (4.1).

Theorem 4.2. Let $f \in C^n[a,b]$ such that $f^{(n+1)}$ is integrable and bounded on

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Close

Quit

Page 14 of 27

(a,b). Suppose n is odd. Then we have

$$(4.2) \quad \frac{2(b-a)^{n+1}}{n(n+3)!} \gamma_{n+1}(f)$$

$$\leq -\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$+ \sum_{k=0}^{n-1} \frac{(n-k)}{n} \cdot \frac{\left((-1)^{k} f^{(k)}(b) + f^{(k)}(a)\right) (b-a)^{k}}{(k+2)!}$$

$$\leq \frac{2(b-a)^{n+1}}{n(n+3)!} \Gamma_{n+1}(f).$$

The inequalities in (4.2) are sharp.

Proof. Let m:=n+1. Then m is an even integer. Consider the mapping $F:[a,b]\to\mathbb{R}$, defined via $F(x):=\int_a^x f(t)\,dt$. Then we clearly have that $F\in C^m[a,b]$ and $F^{(m+1)}$ is integrable and bounded on (a,b). Now, applying inequality (3.6) in Theorem 3.2 to F by choosing $\rho=1$, we readily get

$$\frac{2(b-a)^{m+1}}{(m+2)!(m+1)}\gamma_{m+1}(F)$$

$$\leq -\frac{(m-1)}{(m+1)}(F(b)-F(a))$$

$$+\sum_{k=1}^{m-1}\frac{(m-k)}{(m+1)}\frac{(-1)^{k+1}F^{(k)}(b)+F^{(k)}(a)}{(k+1)!}(b-a)^{k}$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Contents

Contents

Go Back

Page 15 of 27

Close Quit

$$\leq \frac{2(b-a)^{m+1}}{(m+2)!(m+1)}\Gamma_{m+1}(F),$$

or equivalently,

$$\frac{2(b-a)^{m+1}}{(m+2)!(m-1)} \gamma_m(f)
\leq -\frac{m-1}{m+1} \int_a^b f(x) dx
+ \sum_{k=1}^{m-1} \frac{(m-k)}{m+1} \frac{\left((-1)^{k+1} f^{(k-1)}(b) + f^{(k-1)}(a)\right) (b-a)^k}{(k+1)!}
\leq \frac{2(b-a)^{m+1}}{(m+2)!(m+1)} \Gamma_m(f).$$

Multiplying the previous inequality by $\frac{m+1}{(m-1)(b-a)}$, and then using m=n+1 we have

$$\frac{2(b-a)^{n+1}}{(n+3)!n} \gamma_{n+1}(f)
\leq -\frac{1}{b-a} \int_{a}^{b} f(x) dx
+ \sum_{k=1}^{n} \frac{(n+1-k)}{n} \frac{\left((-1)^{k+1} f^{(k-1)}(b) + f^{(k-1)}(a)\right) (b-a)^{k-1}}{(k+1)!}$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 16 of 27

$$\leq \frac{2(b-a)^{n+1}}{(n+3)!n}\Gamma_{n+1}(f),$$

and replacing k by k+1we get (4.2). Moreover, choosing $f(x)=x^{n+1}$ in (4.2), the equality holds. So, the inequalities in (4.2) are sharp.

Remark 3. Applying Theorem 4.2 for n = 1 we again obtain the classical trapezoid inequality (3.9) in Remark 1.

Remark 4. A simple calculation yields $\frac{2}{n(n+3)!} < \frac{1}{(n+2)!(n+1)}$ for any n > 1. Thus inequality (4.2) in Theorem 4.2 is better than (4.1) in Theorem 4.1. Nevertheless inequality (4.1) is useful, because suitable combinations of (4.1), (4.2) lead to some interesting results, as for example in the following theorem.

Theorem 4.3. Let n be an odd integer such that $n \geq 3$. Let $f \in C^{n-2}[a,b]$ such that $f^{(n-1)}$ is integrable and bounded on (a,b). Then the following inequalities hold

$$(4.3) \frac{12(b-a)^{n}}{(n+3)!(n-2)(n-1)} (2(n+1)\gamma_{n-1}(f) - n(n+3)\Gamma_{n-1}(f))$$

$$\leq \int_{a}^{b} f(x) dx - \frac{12n(n+1)}{(n-2)(n-1)} \sum_{k=0}^{n-3} \frac{n(k+2)-2}{2n(n+1)}$$

$$\times \frac{(n-k-2)\left((-1)^{k} f^{(k)}(b) + f^{(k)}(a)\right)(b-a)^{k+1}}{(k+4)!}$$

$$\leq \frac{12(b-a)^{n}}{(n+3)!(n-2)(n-1)} (2(n+1)\Gamma_{n-1}(f) - n(n+3)\gamma_{n-1}(f)).$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 17 of 27

The inequalities in (4.3) are sharp.

Proof. We set the mapping $F : [a, b] \to \mathbb{R}$ by

(4.4)
$$F(x) := \int_{a}^{x} \int_{a}^{t} f(s) \, ds dt.$$

Then we have that $F \in C^n[a,b]$ and $F^{(n+1)}$ is bounded and integrable on (a,b). Applying the inequalities (4.2) in Theorem 4.2 and (4.1) in Theorem 4.1 to F we respectively get the following inequalities:

$$(4.5) \qquad \frac{2(b-a)^{n+1}}{(n+3)!n} \gamma_{n+1}(F)$$

$$\leq -\frac{1}{b-a} \int_{a}^{b} F(x) dx + \frac{F(a) + F(b)}{2}$$

$$+ \sum_{k=1}^{n-1} \frac{(n-k)}{n} \frac{\left((-1)^{k} F^{(k)}(b) + F^{(k)}(a)\right) (b-a)^{k}}{(k+2)!}$$

$$\leq \frac{2(b-a)^{n+1}}{(n+3)!n} \Gamma_{n+1}(F),$$

and

(4.6)
$$\frac{(b-a)^{n+1}}{(n+2)!(n+1)}\gamma_{n+1}(F)$$

$$\leq -\frac{1}{b-a}\int_{a}^{b}F(x)\,dx + \frac{F(b)+F(a)}{2}$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Quit

Page 18 of 27

$$+ \sum_{k=1}^{n-1} \frac{(n-k)}{2(n+1)} \cdot \frac{(b-a)^k \left(F^{(k)}(a) + (-1)^k F^{(k)}(b)\right)}{(k+1)!}$$

$$\leq \frac{(b-a)^{n+1}}{(n+2)! (n+1)} \Gamma_{n+1}(F).$$

Multiplying (4.6) by (-1) and adding the resulting estimation with (4.5), we get

$$(4.7) \quad \frac{(b-a)^{n+1}}{(n+2)!} \left(\frac{2}{n(n+3)} \gamma_{n+1}(F) - \frac{1}{n+1} \Gamma_{n+1}(F) \right)$$

$$\leq -\sum_{k=1}^{n-1} \frac{nk-2}{2n(n+1)} \frac{(n-k)\left((-1)^k F^{(k)}(b) + F^{(k)}(a)\right)(b-a)^{k-1}}{(k+2)!}$$

$$\leq \frac{(b-a)^{n+1}}{(n+2)!} \left(\frac{2}{n(n+3)} \Gamma_{n+1}(F) - \frac{1}{n+1} \gamma_{n+1}(F) \right).$$

Dividing the last estimation with (b-a) and splitting the first term of the sum we have

$$(4.8) \frac{(b-a)^{n}}{(n+2)!} \left(\frac{2}{n(n+3)} \gamma_{n+1}(F) - \frac{1}{n+1} \Gamma_{n+1}(F) \right)$$

$$\leq \frac{(n-2)(n-1)(F'(b) - F'(a))}{12n(n+1)}$$

$$- \sum_{k=0}^{n-1} \frac{nk-2}{2n(n+1)} \frac{(n-k)\left((-1)^{k} F^{(k)}(b) + F^{(k)}(a)\right)(b-a)^{k-1}}{(k+2)!}$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Contents

Go Back

Close

Quit

Page 19 of 27

$$\leq \frac{(b-a)^n}{(n+2)!} \left(\frac{2}{n(n+3)} \Gamma_{n+1}(F) - \frac{1}{n+1} \gamma_{n+1}(F) \right).$$

Finally, setting (4.4) in (4.7) and multiplying the resulting estimation by $\frac{12n(n+1)}{(n-2)(n-1)}$ we get

$$\frac{12 (b-a)^{n}}{(n+3)! (n-2) (n-1)} (2 (n+1) \gamma_{n-1} (f) - n (n+3) \Gamma_{n-1} (f))$$

$$\leq \int_{a}^{b} f(x) dx - \frac{12n (n+1)}{(n-2) (n-1)}$$

$$\times \sum_{k=2}^{n-1} \frac{nk-2}{2n (n+1)} \frac{(n-k) \left((-1)^{k} f^{(k-2)} (b) + f^{(k-2)} (a)\right) (b-a)^{k-1}}{(k+2)!}$$

$$\leq \frac{12 (b-a)^{n}}{(n+3)! (n-2) (n-1)} (2 (n+1) \Gamma_{n-1} (f) - n (n+3) \gamma_{n-1} (f)),$$

and replacing k by k + 2 the inequalities in (4.3) are obtained.

Moreover, choosing $f(x) = x^{n-1}$ in (4.3), the equality holds. So, the inequalities in (4.3) are sharp.

Applying Theorem 4.3 for n = 3 we immediately obtain the following result:

Corollary 4.4. Let $f \in C^1[a,b]$ such that f'' is integrable and bounded on

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 20 of 27

(a,b). Then,

$$(4.9) \quad \frac{(b-a)^{2}}{60} \left(4\gamma_{2}(f) - 9\Gamma_{2}(f)\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{f(a) + f(b)}{2}$$
$$\leq \frac{(b-a)^{2}}{60} \left(4\Gamma_{2}(f) - 9\gamma_{2}(f)\right).$$

Remark 5. Let f be as in Corollary 4.4. If $\gamma_2(f) > \frac{4}{9}\Gamma_2(f)$ then from (4.8) we get the following inequality:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx < \frac{f(a) + f(b)}{2}.$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

5. Generalized Perturbed Trapezoid Inequalities

In this section, using the results of the two previous sections, several perturbed trapezoid inequalities are obtained involving n-times differentiable functions.

Theorem 5.1. Let $f \in C^n[a,b]$ such that $f^{(n+1)}$ is integrable and bounded on (a,b). Then the following estimations are valid:

(5.1)
$$\frac{(b-a)^{n+1}}{(n+2)! (n+1)} \gamma_{n+1}(f)$$

$$\leq \frac{(-1)^n}{(b-a)} \int_a^b f(x) dx + \frac{(-1)^{n+1} (f(a) + nf(b))}{(n+1)}$$

$$+ \sum_{k=1}^{n-1} \frac{(n-k)}{(n+1)} \frac{(-1)^{n+k+1} f^{(k)}(b)}{(k+1)!} (b-a)^k$$

$$\leq \frac{(b-a)^{n+1}}{(n+2)! (n+1)} \Gamma_{n+1}(f),$$

$$(5.2) \quad \frac{(b-a)^{n+1}}{(n+2)!(n+1)} \gamma_{n+1}(f) \leq -\frac{1}{(b-a)} \int_{a}^{b} f(x) \, dx + \frac{nf(a) + f(b)}{n+1} + \sum_{k=1}^{n-1} \frac{(n-k)}{(n+1)} \frac{f^{(k)}(a)}{(k+1)!} (b-a)^{k}$$

$$\leq \frac{(b-a)^{n+1}}{(n+2)!(n+1)} \Gamma_{n+1}(f) .$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 22 of 27

Further, if n is an even positive integer, then

$$(5.3) \quad \left| -\frac{1}{(b-a)} \int_{a}^{b} f(x) dx + \frac{f(a) + f(b)}{2} + \sum_{k=1}^{n-1} \frac{(n-k)}{2(n+1)} \frac{f^{(k)}(a) + (-1)^{k} f^{(k)}(b)}{(k+1)!} (b-a)^{k} \right| \\ \leq \frac{(b-a)^{n+1}}{2(n+2)! (n+1)} (\Gamma_{n+1}(f) - \gamma_{n+1}(f)).$$

The inequalities in (5.1) and (5.2) are sharp.

Proof. Taking the limit of (3.6) in Theorem 3.2 as $\rho \to 0$ we obtain (5.1). Further for $\rho > 1$, dividing (3.6) by $(\rho + (-1)^{n+1})$ and then obtaining the limit from the resulting estimation as $\rho \to \infty$ we get (5.2). Now, let n be an even integer. Then multiplying (5.2) by (-1), adding the resulting inequality with (5.1) and finally multiplying the obtained estimation by $(-\frac{1}{2})$ we easily get (5.3).

Remark 6. Applying Theorem 5.1 for n = 2 we obtain the following inequalities:

$$\frac{(b-a)^{3}}{72}\gamma_{3}(f) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) dx - \frac{f(a) + 2f(b)}{3} + \frac{f'(b)}{6} (b-a) \\
\leq \frac{(b-a)^{3}}{72} \Gamma_{3}(f),$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 23 of 27

$$\frac{(b-a)^{3}}{72}\gamma_{3}(f) \leq -\frac{1}{(b-a)}\int_{a}^{b}f(x)\,dx + \frac{2f(a) + f(b)}{3} + \frac{f'(a)}{6}(b-a) \\
\leq \frac{(b-a)^{3}}{72}\Gamma_{3}(f),$$

(5.4)
$$\left| \frac{1}{(b-a)} \int_{a}^{b} f(x) dx - \frac{f(a) + f(b)}{2} + \frac{f'(b) - f'(a)}{12} (b-a) \right| \\ \leq \frac{(b-a)^{3}}{144} (\Gamma_{3}(f) - \gamma_{3}(f)),$$

where $f \in C^2[a,b]$ and is such that f''' is bounded and integrable on [a,b]. Therefore, inequality (5.4) can be regarded as a Grüss type generalization of the perturbed trapezoid inequality.

Theorem 5.2. Let $f \in C^n[a,b]$ such that $f^{(n+1)}$ is integrable and bounded on (a,b). Suppose n is odd and greater than 1. Then the following estimation holds:

$$(5.5) \quad \frac{2(b-a)^{n+1}((n+3)\gamma_{n+1}(f)-(n+1)\Gamma_{n+1}(f))}{(n+3)!(n+1)(n-2)} \\ \leq \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{f(b)+f(a)}{2} \\ -\sum_{k=1}^{n-2} \frac{(n-k)(n-1-k)}{(n-2)(n+1)} \frac{\left(f^{(k)}(a)+(-1)^{k}f^{(k)}(b)\right)(b-a)^{k}}{(k+2)!}$$

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 24 of 27

$$\leq \frac{2(b-a)^{n+1}((n+3)\Gamma_{n+1}(f)-(n+1)\gamma_{n+1}(f))}{(n+3)!(n+1)(n-2)}.$$

The inequalities in (5.5) are sharp.

Proof. Multiplying (4.2) in Theorem 4.2 by $\frac{n}{n-2}$ and (4.1) in Theorem 4.1 by $-\frac{2}{n-2}$ and then adding the resulting estimations we see that the last term of the sum in the intermediate part of the obtained inequality is vanishing, and so, after some algebra, we get (5.5). Finally, choosing $f(x) := x^{n+1}$ in (5.5), a simple calculation verifies that the equalities hold. Therefore, the inequalities in (5.5) are sharp.

Applying Theorem 5.2 for n = 3 we get immediately the following result.

Corollary 5.3. Let $f \in C^3[a,b]$ such that $f^{(4)}$ is integrable and bounded on (a,b). Then the following estimation holds:

$$(5.6) \quad \frac{1}{720} (b-a)^4 (3\gamma_4(f) - 2\Gamma_4(f))$$

$$\leq \frac{1}{b-a} \int_a^b f(x) dx - \frac{f(b) + f(a)}{2} + \frac{(f'(b) - f'(a))(b-a)}{12}$$

$$\leq \frac{1}{720} (b-a)^4 (3\Gamma_4(f) - 2\gamma_4(f)).$$

The inequalities in (5.6) are sharp.

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

A.I. Kechriniotis and N.D. Assimakis

Title Page

Contents

Go Back

Close

Quit

Page 25 of 27

References

- [1] N.S. BARNETT AND S.S. DRAGOMIR, On the perturbed trapezoid formula, *Tamkang J. Math.*, **33**(2) (2002), 119–128.
- [2] N.S. BARNETT AND S.S. DRAGOMIR, A perturbed trapezoid inequality in terms of the third derivative and applications, *RGMIA Research Report Collection*, **4**(2) (2001), Art. 6.
- [3] N.S. BARNETT AND S.S. DRAGOMIR, Applications of Ostrowski's version of the Grüss inequality for trapezoid type rules, *Tamkang J. Math.*, **37**(2) (2006), 163–173.
- [4] C. BUSE, S.S. DRAGOMIR, J. ROUMELIOTIS AND A. SOFO, Generalized trapezoid type inequalities for vector-valued functions and applications, *Math. Ineq. & Appl.*, **5**(3) (2002), 435–450.
- [5] P. CERONE AND S.S. DRAGOMIR, Three point identities and inequalities for n-time differentiable functions, *SUT Journal of Mathematics*, **36**(2) (2000), 351–383.
- [6] P. CERONE AND S.S. DRAGOMIR, Trapezoidal type rules from an inequalities point of view, *Analytic Computational Methods in Applied Mathematics*, G. Anastassiou (Ed.), CRC press, N.Y., 2000, 65–134.
- [7] P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS AND J. SUNDE, A new generalization of the trapezoid formula for n-time differentiable mappings and applications, *Demonstratio Mathematica*, **33**(4) (2000), 719–736.

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

- [8] XIAO-LIANG CHENG AND JIE SUN, A note on the perturbed trapezoid inequality, *J. Inequal. Pure and Appl. Math.*, **3**(2) (2002), Art. 29. [ON-LINE: http://jipam.vu.edu.au/article.php?sid=181].
- [9] S.S. DRAGOMIR, A generalised trapezoid type inequality for convex functions, *East Asian J. Math.*, **20**(1) (2004), 27–40.
- [10] S.S. DRAGOMIR, P. CERONE AND A. SOFO, Some remarks on the trapezoid rule in numerical integration, *Indian J. Pure Appl. Math.*, **31**(5) (2000), 475–494.
- [11] S.S. DRAGOMIR AND A. MCANDREW, On trapezoid inequality via a Grüss type result and applications, *Tamkang J. Math.*, **31**(3) (2000), 193–201.
- [12] S. S. DRAGOMIR AND Th.M. RASSIAS, Ostrowski Inequalities and Applications in Numerical Integration, Kluwer Academic, Dordrecht, 2002.
- [13] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Inequalities for Functions and their Integrals and Derivatives*, Kluwer Academic, Dordrecht, 1994.
- [14] N. UJEVIĆ, On perturbed mid-point and trapezoid inequalities and applications, *Kyungpook Math. J.*, **43** (2003), 327–334.
- [15] N. UJEVIĆ, A generalization of Ostrowski's inequality and applications in numerical integration, *Appl. Math. Lett.*, **17** (2004), 133–137.
- [16] N. UJEVIĆ, Error inequalities for a generalized trapezoid rule, *Appl. Math. Lett.*, **19** (2006), 32–37.

Generalizations of the Trapezoid Inequalities Based on a New Mean Value Theorem for the Remainder in Taylor's Formula

