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ABSTRACT. Some integral inequalities with infinite integration limits are established as gener-
alizations of a known result due to B.G. Pachpatte.
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1. INTRODUCTION

As well known, various differential and integral inequalities have played a dominant role in
the development of the theories of differential, functional-differential as well as integral equa-
tions. The most powerful integral inequalities applied frequently in the literature are the famous
Gronwall-Bellman inequality ]|1] and its first nonlinear generalization due to Bihari(¢f., [2]). A
large number of generalizations and their applications of the Gronwall-Bellman inequality have
been obtained by many authors (cf!, [4] = [7], [3], [5]). Pachpatte [6, p. 28] proved the follow-
ing interesting variant of the Gronwall-Bellman inequality which contains an infinite integration
limit:

Theorem A. Let f be a nonnegative continuous function defined ferR, = [0, o) such that
I, f(s)ds < oo andc(t) > 0 be a continuous and decreasing function defined ferR ... If
u(t) > 0is a bounded continuous function definedfar R, and satisfies

u(t) < c(t) + /too f(s)u(s)ds, teR,,
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then

u(t) < c(t exp(/ f(s ), teR,.

We note that, the condition above aft) can be relaxed to only require that, it is nonnegative,
continuous and nonincreasing Bn . The importance of the last result was indicated in [6] by
the fact that, it can be used to derive the Rodrigues’ inequality [8] that played a crucial role in
the study of many perturbed linear delay differential equations.

The aim of the present paper is to establish some new linear and nonlinear generalizations of
Theorenj A. In the sequel, we denote®ysS, M) the class of continuous functions defined on
setS with range contained in sat/.

2. LINEAR GENERALIZATIONS
Firstly we show that an inversed version of Theofem A is valid:

Theorem2.1.Letf € C(R,, R, ) satisfy the conditiorf;” f(s)ds < co andm € C (R, (0,0))
be nondecreasing. if € C(R,,R,) is bounded and satlsfles the inequality

2.1) o) zm(®)+ [ S(s)als)ds, b eRs,
then
2.2) 2(t) > m(t) exp /t T f(s)ds, teR,.
Proof. From [2.1) we derive
(2.3) % >1+ ;_8 /OO F(s)z(s)ds

>1 +/ f(s ds t eRy,

wheres > (0 is an arbitrary number satlsfylng( )—g > 0. Define a positive and nonincreasing
functionV € C(R;,R;) by the right member of (2|3). Then we hali¢oco) = 1 and

(2.4) x(t) > [m(t) — €]V (1), teR,.
By differentiation we obtain
dv(t) x(t)

dt - _f(t)m(t) —c < —f(t)V(t), te I@Jr

Rewrite the last relation in the form
dv(t)
— R

and integrating its both sides frotro oo,then we have

InV(oo) —InV(t / f(s t R,

i.e.,
V(t) > exp/ f(s)ds, teR, .
¢

Substituting the last relation intp (2.4), and letting- 0, the desired inequality (2.2) follows.
0

From Theorem A and Theorgm 2.1, we obtain the following
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Corollary 2.2. Letf € C(R,R,) satlsfyf0 s)ds < oo. Letc > 0 be a constant. Then the
linear integral equation

(2.5) z(t) =c +/ f(s)x(s)ds, t eRy,
t
has an unique bounded continuous solution represented by
(2.6) z(t) = cexp/ f(s)ds, teR, .
t
Proof. If ¢ > 0, by Iettingc( ) = candm(t) =c¢ respectively in Theorefn]A and Theorém|2.1,
we havex(t) < cexp [,° f(s)ds andz(t) > cexp [, f(s)ds.
Hence[(2.6) is the umque bounded continuous solutlon of the equptign (2.5). By the contin-
uous dependence orof z(t) given by [2.6), the conclusion holds also whes 0. 0J

The next result is a new generalization of Pachpatte’s inequality in the case when an iterated
integral functional is involved.

Theorem 2.3.Letn € C(R+,R+)be nonincreasing. Lef,h € C(R.,R,),g € C(R.,R,)
with ¢/'(t) > 0 and [~ [f(s) + g(s)h(s)]ds < oo. If z € C(R4,R,) is bounded and satisfies
the inequality

@7)  at) <n) + /t " s) (x(s)—l—g(s) / h h(k)a:(k:)dk) ds, tcR,,
then

(2.8) x(t) < nl(t) {1 + /too f(s)exp (/Oo [f(k)+ g(k)h(k)]dk) ds} , teRy.
Proof. From [2.T7) we have

x(t)
(2.:9) n(t) +e¢

n(t)1+ : / e (56(8) +9(5) / ) h(k)x(k)dk:) s

<1+ /too £(s) (nég? 0 /:O h(k)%dk) ds, te€R,,

wherees > 0 is an arbitrary positive number. Define a functibhe C(R,R.) by the right
member of inequality (2]9). The¥i(¢) is positive and nonincreasing with(cc) = 1, and by

(2.9) we have
(2.10) z(t) < [n(t) + €] V (1), teR,.
By differentiation we obtain

D — 10 (n ot [ ) ar)

> —f(t) (V(t) + g(t) /too h(k)V(k)dk) , teR..

<1+

Now we define -

W) = V(t)+9t) [ B0V (R,
ThenW(t) € C(Ry, R, ) is positive,IV (c0) = t( ) = 1, and we have
(2.11) W(t)>V(t), teR.,
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and

(2.12) %it) > —f(t) W(t), teR,.

By differentiation we derive

213 D T ) [ v ak - glopve

> —[f(t) +g@)h(®)|W(t), teR,,
here [2.1]1) and (2.12) are used. Rewrite the last relation in the form

%gz > —[f{t) +gh®)],  teR:,

and then integrating both sides frano oo, we obtain

W (o) = W(0) = = [ [06) + g0k
or t
Wiy <exp ([ 10 +g0pmlaE), teR.
Substituting the last inequality intt@]u) and then integrating both sidestftomo, we have

V@@—*ﬁﬂZ——[meMMPQ[mUGﬂ+g%M@ﬂﬂ>d&

V) <1+ /t " F(s)exp ( / T + g(k)h(k)]dk> ds,  teR,.
From inequality[(2.10) we obtain
z(t) < [n(t) + €] {1 + /too f(s)exp (/00 [f(k) + g(k:)h(k)]dk:) ds} , teR,.

Hence, by lettingg — 0 the desired inequality (2.8) follows from the last relation directly.
O

Note that, ifg(t) = 0 or h(t) = 0, then from Theorerh 2|3 we derive Theorgin A.

3. NONLINEAR EXTENSIONS

Theorem 3.1.Let f € C(R, R, ) satisfy the conditiorfooo f(s)ds < oo andc is a nonnegative
number. Letp,v € C(R,,R,) be strictly increasing and>~! denote the inverse af. If
xz € C(R,R,) is bounded and satisfies the inequality

(3.2) wu@nsC+[mfwmu@mm t eR,,

then fort € (T, 00) we have

(3.2) d <ot ([ reas).

whereG, ! is the inverse of7. and

(33) GC(Z) = /Z #81(8), z Z C,
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andT > 0 is the smallest number satisfying the condition
(3.4) / f(s)ds € Dom(G™), aslong ag € (T, o).
t

Proof. Without loss of generality we may assume- 0. Otherwise we may replace it by an
arbitrary positive number and then let — 0 in (3.1) and[(3.R) to complete the proof.

Define a nonincreasing and differentiable functidne C'(R, [c, o0)) by the right member
of (3.1)), then we have

(3.5) o(t) <@ UH(D),  teR.,
andH (co) = ¢ holds. By differentiation we obtain
WO apleo)] = ~fwo e W), teRy,

where we used inequality (3.5). Rewrite this relation as

dH (t)
Vop HDd = —f(t), teRy.

Integrating both sides fromto oo, we derive

G (H(o0)) — GL(H(1)) > - / T fs)s,  teR.,

GL(H()) < Gu(c) + / T f(s)ds,  teR,,

where the functior@, is defined by[(3]3). Sinc€'.(c) = 0, in view of the choice of"in (3.4),
the last relation implies

o <6 ([ reas), re oo

Finally, substituting the last inequality intb (B.5), the desired inequality (3.2) follows immedi-
ately. O

Remark 3.2. In the case whea = 0 andy(0) = ¥ (0) = 0 hold, to ensure the correct definition
of the functionGG(z), an additional condition is needed, namely,

1 ds
li — =M < 0.
513%/5 Yo p~i(s) >

Theorem 3.3. Letp, ¢ be positive numbers ande C'(R., R, ) be positive and nonincreasing.
Let f € C(R., R, ) satisfy the conditiorf;* f(s)ds < cc. If z € C(R,, R, ) is bounded and
satisfies the inequality

(3.6) ) <)+ [ FOlNds teRs,

the following conclusions are true:
() fp>gq,

_1
P—q

(3.7) 2(t) < MP(1) [1#% / T e p(sys|T, teR,;
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(I fp=gq
(3.8) z(t) < P(t) exp E? /too f(s)ds} : teRy;
iy 1fp<gq,
(3.9)  a(t) <) {1 + 1% " o(s) e f(s)ds] T e (T o),

whereT' is the smallest non-negative number that satisfies

/TOO C(S)(q—p)/pf( )ds < ﬁ

Proof. (I) If p > ¢ holds, from inequality] (3]6) we obtain
yP(t) <1 —|—/ C(S)(q_p)/pf(s)yq(s)ds, teRy,
t
wherey(t) = f’}(,f(t) The last integral inequality is a special case.(3 1) whéf) = €7,
¥(n) = n?. By (3.3) we derive

Gi(z) :/ s~UPds = p (Z(p—q)/p_ 1),
1 p—q

and hence,
D

pP—q

Gyl (v) = {p ; Do+ 1}
SinceGy ! (v) D [0, 00) holds, from [(3.R) we derive that

cf;/it(zf) <@ oGy [/too C(S)(q_p)/pf(s)ds]

= {G;l [ /t N c(s)a=P/P f(s)ds] }’1’

p—q

{1 + B4 c(s)(qp)/pf(s)ds} : t € Ry
p t

The desired inequality (3.7) follows from the last relation directly.

(I) If p = q holds, lettingz(t) = Lt) from .) we derive

1/fﬂ(w
(3.10) ) < 1+/ f(s)z(s)ds, teR,.

Define a positive, nonincreasing and differentiable funcfioi) by the right member of
(3.10), therz(t) < V(t) andV (c0) = 1 hold. Sincec(t), f(t), z(t) are nonnegative, by differ-
entiation we obtain fron{ (3]9)

VI(t) = —f(t)z(t) > —f()V(t), teRy,
i.e.,

V()
> —f(t teR,.
Integrating both sides of the last relation freno oo, then we have
InV(co) —InV(t / f(s t eRy,
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or
InV(t) <InV(co / f(s t eRy.

Hence we obtain

Lf/i?t)r =z(t) < V() <exp (/too f(S)dS) . teR,.

This relation implies the desired inequalify (3.8) immediately.

(1) If p < ¢ holds, similar to the process of (), we can get

p

prP—q

Gi(e) = L0 1), i) = [ ]

Since

/OO c(s)(q_p)/pf(s)ds — L7
T

q—Pp
we can derive

(3.11) 1+ —/ )PP f(s)ds > 0, fort € (T, o00).
Inequality [3.11) ensures that; ' ([ c(s) /7 f(s)ds) exists fort € (T,00). Then we
get the desired inequality (3.9). O

Note that, Theoremn A is a special case of Thedrer 3.3 (Il), wheng = 1. Some similar
integral inequalities without infinite integration limits had been established by Yahg [8, 9].

Corollary 3.4. Letp, q be positive numbers with < ¢. Let f € C(R,, R ) satisfy the condi-
tion [ f(s)ds < oo. Thenz(t) = 0 (¢ € Ry) is the unique bounded continuous and nonneg-
ative solutlon of inequality

(3.12) P < / F(s)[z(s))%ds, t €R,.
Proof. Letz € C(R,R;) be any bounded function satisfyirg (3.12). We obtain
(3.13) P <e +/ f(s)[x(s)]%ds, teRy,

wheree is an arbitrary positive number.
Whenp < ¢ ande is small enough, the inequality

/ 8(t;{—p)/pf(s)ds S
t q—p
holds for allt € R, ..
A suitable application of Theorejm 3.3 {o (3/13) yields thatferR

1

81/p [1 + ]% LOO g(q_p)/pf(s)ds} P=q , p < q’
x(t) <

el/P exp [Il) [ f(s)ds} , p=q.

Finally, lettinge — 0, from the last relation we obtaint) = 0,t € R,. O
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If the conditionp < ¢ is replaced by > ¢, the resultz(¢) = 0 cannot be derived directly
from Theorem 3[3. In fact, if > g andM (t) := [~ f(s)ds, then

1 1
lim £/ {1 + ]ﬂ/ e(qp)/pf(s)ds] o luM@)] pq.
e=0 D Ji p

4. EXAMPLES

Example 4.1.Letz € C(R, R, ) be bounded and satisfy the integral inequality
x(t) > 1+ /Oose_gsx(s)ds, t eR,.
Then by Theorerh 2|1, we have t
x(t) > exp /OO se %*ds = exp [
t
Example 4.2.Letx € C(R,,R ) be a bounded function satisfying the inequality

z(t) <1 +/ e *x(s)ds +/ es/ (e *x(k)dk) ds, t€R,.
t t s
Then by Theorern 2|3 ,we easily establish

z(t) <1 +/ e *exp {/ 2€_kd/{7:| ds
t s

[1 + exp (26_t)} , teR,.

1
2
Example 4.3.Letx € C(R,,R ) be a bounded function satisfying the inequality

o2 (t) < 1+/ e x(s)ds, tER,.
¢

dom (Gll (/ e?’sds)) = dom (%) DRy
t 3 — e

holds, referring to the proof of Theorém [3.3, we obtain

3 2

Since
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