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ABSTRACT. In this paper, we give a refinement and a reverse of a geometric inequality in a
triangle posed by Jian@l[2] by making use of the equivalent form of a fundamental ineduality [6]
and classic analysis.
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1. INTRODUCTION AND MAIN RESULT

For AABC, leta, b, c be the side-lengths4, B, C' the angless the semi-perimeterz the
circumradius and the inradius, respectively. Moreover, we will customarily use the cyclic sum

symbols, that is3" f(a) = f(a) + f(b) + f(c), 3 f(b,c) = f(a,b) + f(b,c) + f(c,a) and
[1/f(a) = f(a)f(b)f(c) etc.

In 2008, Jiang [2] posed the following geometric inequality problem.
Problem 1.1.In AABC, prove that

a B C 1
1.1 it ) >
(1.1) Zb+c<tan 2+tan 2)_3

In the same year, Manh Dung Nguyen and Duy Khanh Nguyen [4] proved ineq{iality (1.1).
In this paper, we give a refinement and a reverse of inequglity (1.1).

Theorem 1.1.In AABC, the best constarit for the following inequality

a B C 1 2r
1.2 tan* = 4 tan* — | > -+ k(1 -2 ).
(1.2 Zb+c(an2+an 2)_3+ ( R)

is Ao =~ 1.330090721 which is the positive real root of:
(1.3) 3564\ + 114588\° — 246261\* + 137484)\% — 29712)\% 4 2336\ — 60 = 0
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Itis easy to see that inequalify (1L.1) follows from Theofem 1.1Emeér’s inequalityR > 2r

immediately.
Theorem 1.2.In AABC, we have
2
(2)- ] |
2r
2. PRELIMINARY RESULTS

a B c\ 1 8
1.4 pant 2 ppant &) <14 8
(1.4) Zb+c(an2+an 2>—3+3

In order to prove Theorefn 1.1 and Theorjen] 1.2, we shall require the following five lemmas.

Lemma 2.1([6]). For any triangleABC', the following inequalities hold true:
2

1 3 S 1 3
. — — < — < — —
(2.1) 46(4 §)° < 72 S 4(2 0)(2+6)°,
whered = 1— /1 — 2 € (0,1]. Equality on the left hand side of the double inequafyl))is

valid if and only if triangleABC' is an isosceles triangle with top-angle greater than or equal
to 7, and equality on the right hand side of the double inequdtyl)) is valid if and only if
triangle ABC'is an isosceles triangle with top-angle less than or equd].to

Lemma 2.2. In AABC, we have

a B C
(2.2) Z T <tan4 bl + tan* 5)

1
= -[25% — 2(32R* 4 24Rr + 1r%)s*
st(s? + 2Rr +1r?) 25 ( * rEr)s
+2(4R + 1) (32R* + T2R*r + 28Rr* + 1%)s* — 2r(2R + r)(4R + r)"].
Proof. From the law of cosines, we get

tanQé _ sin” 4 _ 1 —cosA _ 1——b2+;Zc_“2 _ (a+b—c)(c+a—10)
2 c032§ 1+cosA 14_% (a+b+c)b+c—a)

In the same manner, we can also obtain
s, B (b+c—a)la+b—rc)

t — = t
g (a+b+c)c+a—0b) an

2 C _ (cta—-Db)(b+c—a)
2 (a+b+c)at+b—rc)
Hence,

a B C
(23) Z m (tan4 E —+ tan4 E)

a [(b+c—a)la+b—c)?* (c+a—0)*b+c—a)
- Zb—l—c [(a+b+c)2(c+a—b)2 (a+b+c)*(a+b—c)?
_ Yale+a)a+b)(b+c—a)[la+b—c)' + (c+a—b)"]
B (a+b+e)2-[T(b+c—a)?-T[(b+0)
And it is not difficult to verify the following three identities.

(2.4) H(b+c) = (ab+ bc+ ca)(a+ b+ ¢) — abe,

(2.5) [[(0+c—a)=—(a+b+c)®+4(ab+ be+ ca)(a+ b+ c) — 8abe,
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(2.6) Za(c +a)a+b)(b+c—a)[a+b—c)* + (c+a—b)Y
=2(a+b+c)'' —28(ab + be + ca)(a + b+ c)? — 18abe(a + b+ ¢)®
+160(ab + be + ca)*(a + b+ ¢)" + 224abc(ab + be + ca)(a + b + ¢)°
— 400a*b*c*(a + b+ ¢)® — 480(ab + bc + ca)?(a + b+ ¢)®
— 768abc(ab + be + ca)?*(a + b+ ¢)*
+ 2560a°b*c*(ab + be + ca)(a + b + ¢)?
+ 768(ab + be + ca)*(a + b+ ¢)* — 1280a°b’c*(a + b + ¢)?
+ 512abc(ab + be + ca)®(a + b + ¢)* — 512(ab + be + ca)®(a + b + c)
— 3328a%b*c*(ab + be + ca)*(a + b+ c) + 2048a*b*c* (ab + be + ca)
+ 512abc(ab + be + ca)?,
Identity (2.2) follows directly from identitie$ (2.3) £ (2.6) and the following known identities:
a+b+c=2s, ab+bc+ ca = s® +ARr + 12, abc = 4Rrs.
U
Lemma 2.3([9]). In AABC, we have
(2.7) s* — (20Rr — r?)s® + 4r*(4R +1)* > 0.
Lemma 2.4. The function

1
s*(s®>+ 2Rr +1r?)
+2(4R 4+ 7)(32R* + T2R?r + 28Rr® +1°)s* — 2r(2R + 1) (4R + 1)*]

- [25° — 2(32R* + 24Rr + 1%)s?

f(s) =

is strictly monotone decreasing on the inter{al, s,], where

s = \/2R2 +10Rr —r2 — 2(R — 2r)V R*> — 2Rr
1

and

Sg = \/2R2 + 10Rr —r?2 4+ 2(R — 2r)V R?> — 2Rr

= %Wz —6)(2+6)3R.

Proof. Calculating the derivative fof (s), we get
fs) = sP(s% + 2;7" +72)2
- (4R* + 4Rr + 31 — §%) + 64R*[s* — (20Rr — r%)s® + 4r?(4R + 1)?]
+ (116 R*r + 164R*r* + 18Rr® + r*)[—s* + (4R* + 20Rr — 2r°)s”
— (4R + )3 4 [1024488r° 4 31773997° (R — 2r) 4 4148540r* (R — 2r)?
+ 29131367 (R — 2r)® 4+ 1156192r?(R — 2r)* + 2448167 (R — 2r)°
+ 21504(R — 27)%]r?}.

{(16R* 4+ 13Rr + r*)[s* — (20Rr — r?)s* + 4r*(4R + 1)?]
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From inequality [(2.]7) Euler’s inequality R > 2r, Gerretseris inequality (seel[1, page 45])
s? < 4R* + 4Rr + 3r? and the fundamental inequality (séé [3, page 2])

—s* + (4R* + 20Rr — 2r*)s® —r(4R +1)* > 0,

we can conclude that (s) < 0. Therefore f(s) is strictly monotone decreasing on the interval
(51, 82]. 0

Lemma 2.5([10]). Denote
f(x) = apx" + a4 -+ ay,
g(x) = box™ + byt + -+ by,

If ap # 0 or by # 0, then the polynomialg(x) andg(z) have common roots if and only if

ag a1 ao an, 0 e 0
0 Qo aq Ap—1 Qp
B 0 0 ag Qy, o
R(f,9) = bo by by - e eee e 0 =0,
0 by b 0
0 0 O bo b1 b,

whereR(f, g) is the Sylvester Resultant §fz) andg(x).

3. THE PROOF OF THEOREM [1.]
Proof. By Lemmé& 2.2 and Lemnja 2.4, we get

a B C
(3.1) Z bic (tan4 5 + tan? E)

68 — 76° + 205* — 2463 + 3252 — 486 + 32
Z f(SQ) = 2 2
0+ 1)(0 —2)2(2+49)
Now we consider the best constant for the following inequality.

6 =55 4 oys3 2 _
(3.2) ) 76° + 200 246° + 326 480 + 32 Zl-l-k 1_2_7“
(0+1)(d —2)%2(2+9)2 3 R
:%+kﬂ—®2 0<s<1).

() In the case ob = 1, the inequality[(3.R) obviously holds.
(77) In the case 0f < ¢ < 1, the inequality[(3.2) is equivalent to

4 3 2
ks 900):= 33((; n 11)622 —+22)§?5i§§)2 (0<o <),
Calculating the derivative faj(9), we get
, 300 — 328° + 925* — 3252 + 30452 + 51286 — 320
9(9) = 306+ 1)2(2— 0)3(5 + 2)3 '
Letting ¢'(6) = 0, we get

(3.3) 30° — 326° + 926* — 326° + 3046° + 5126 — 320 = 0, (0<d<1).
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It is not difficult to see that the equation (B.3) has only one positive root on the open interval
(0,1). Denoted, to be the root of the equatiop (3.3). Then

305 — 1665 + 2467 + 80
(00 + 1)(0g — 2)%(d0 + 2)?

(3.4) 9(8)min = 9(do) =

It is easy to see that(dy) is a root of the following nonlinear algebraic equation system.

F(dy)
&9 {Gwo)

0,
0,

where
F(60) = 3(00 + 1) (8 — 2)*(60 + 2)°\ — (305 — 165 + 2467 + 80)

and
G(00) = 385 — 3205 + 9205 — 3265 + 30457 + 51265 — 320.
Then,
30 16 —24\ 3XA—3 .- 48\ —80 0 0
0 30 16—24X\ - 48\ 48\ —80
0 0 3\ .o 48N\ — 80
Ry, (F,G) = 3 —39 92 0
0 3 —-32 0
0 0 0 3 -32 ... =320

= —3177213868376064(3564\5 + 114588\% — 246261 \* 4 137484\
— 29712)% 4 2336\ — 60).

With Lemmg 2.5, we can conclude tha®,) is the real root of[(1]3). And the equatidn (1.3)
has only one positive real root, henggy,) is the positive real root of (1.3). Namely, the best
constant for inequality (3]2) is the real positive root[of|1.3).

From [3.1) and above, we find that Theorem 1.1 holds.

Now we consider when we have equality in

a 45 4€ >1 _%
(3.6) Zb+c(tan 2—|—tan 2)_3+)\0 1 =)

It is easy to see that equality in (B.6) holds whém BC' is an equilateral triangle. We
consider another case: From the process of seekingd) and Lemma 2]1, we can find the
equality of inequality[(3]6) holds wheh ABC' is an isosceles triangle with top-angle less than
or equal toF andd = d, or % = 28y — 02, there is no harm in suppositg= c = 1(0 < a < 1),
then

2r (a+b—c)(b+c—a)(c+a—Db)

J— 2 —_ - = — J—
209 — 6 7 o a(2 —a),
Thusa = 4y, namely, the equality of inequality (3.6) holds wh&m BC' is isosceles and the
ratio of its side-lengths i& : 1 : 1. O
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4. THE PROOF OF THEOREM [1.2
Proof. By Lemmé& 2.2 and Lemnija 2.4,

a B C
(41) Z m <tan4 5 —f— tan4 E)
0% 4+ 567 — 116% — 12365 + 640* 4+ 116852 — 217662 + 5125 + 512
(5% — 563 + 1202 — 400 + 64)(6 — 4)2 ‘

< f(s1) =
Now we prove

—2(6% 4+ 507 — 116° — 1236° 4 640* 4 11686% — 217652 + 5126 + 512)

4.2

(4.2) (64 — 563 4+ 1202 — 400 + 64)(0 — 4)2
S1,8 32_1 _1.8 1 2_1
=3 3|\2r 3 3 |\26—42 '

Inequality (4.2) is equivalent to
(0—1)X -0
302(5 — 2)2(6 — 4)2(6* — 563 + 1262 — 400 + 64) —

(4.3)

where

(4.4) X =60" + 126" — 1576 — 3926% + 18125" + 81126° — 434164°
+ 700485* — 464005° + 128002 + 10245 — 8192.

From0 < § < 1, itis easy to see that= ; — 1 > 0, hence, we can easily obtain the following
two inequalities

(4.5) 0 — 55 +126% =400+ 64 = (1 = §)* + (1= 6)* +3(1 = §)* +27(1 = ) +32 >0
and

(4.6) X = 6"(—8192t" — 890880 — 42752017 — 1236800t° — 2420832t" — 3346744t°
— 3293632t° — 2280708t* — 1080664t> — 332453t% — 59702t — 4743) < 0.

For0 < § < 1, together with[(4.4) -{(4]6), we can conclude that inequd]ity| (4.3) holds, so
inequality [4.2) holds. Inequality (1.4) immediately follows frdm (4.1) gnd]|(4.2). O
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