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ABSTRACT. We obtain an identity in real inner product spaces that leads to the Griss inequality
and an inequality of Ostrowski.
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1. INTRODUCTION

The Griss inequality was generalized by S.S. Dragomir to the inner product spaces in [1].
It turned out to be an inequality relative to the inner products and norms of vectors in inner
product space, that is,

“Let (H; (-,-)) be aninner product space o¥&fK = C,R) ande € H, |le|| = 1. if ¢,~, D,
are real or complex numbers amdy are vectors i such that the condition

(1.2) Re (Pe — x,x — ¢e) > 0, Re(l'e —y,y —ve) >0
holds, then

1
(1.2) [ {z,y) = (z,e) {e.y) [ < 7@ = gl[I" =]

In this paper, we give an identity that yields the inequality

< fhet? - s ] [~ s o

herez,y,z € H, H is a real inner product space.
From inequality[(1.3), we obtain the Griss inequality and an inequality by A. Ostrowski.

13) |y - ﬁ (.2) (5, 2)
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2. MAIN RESULT

Let z,y, z be three vectors in real inner product spaces. Denoté by span{z} the linear
subspace spanned by andWW := span{z, z} the linear subspace spanned:bnd z, de-

note bydist(z, span{z}) = ianr ||x — sz|| for the distance betweenandspan{z}, and
—00<s<+00
dist(z, span{z, y}) = <intf<+ |z — (sz + ty)||. The main result of this paper is:

Theorem 2.1. Suppose, y, z are three non-zero vectors in a real inner product space, then

1 2

dist 2(1.7 span{z}) dist 2(y7 Sp&ﬂ{Z}) - <I7 y> - W <ZI7, Z> <y7 Z>
z

_

el

Proof. Let D = dist ?(x, span{y})||y||*. It is easy to see that

(2.1) D = ||z]?|lyll* = (z,)".

dist ?(z, span{y}) dist ?(z, span{z, y}).

WhenD # 0, we determine the infimum of (s, t) = ||z — (sz + ty)||? by discovering critical
points of J(s, t). Simple calculus yields

J(s,t) = |2l = 22, 2) s = 2{y, 2) t + [|2[|*s” + 2 (z, ) st + [ly[|"**,

thus partial derivatives of (s, t) are

2.2) 2 allPs +2m )t 240, 2)
oJ
Let 22 = 0and%’ = 0, we obtain
1
(2.3) 5= E(II?JH2 (z,2) = (y,2) (z,y))
1

t= (el (9, 2) = (2,2) (@,9)).
Substituting fors andt in
T(s,t) = |21 = 2z, 2) s — 2 {y, 2) t + al|?s® + 2 () st + [y 222,
by (2.3), we obtain
(2.4) dist?(z, span{z,y})
e R <1_ (2,2 (2 (ay) +2<x,z><y,z><x7y>>.

D [ 1 e 77 7] [ 117 | e

On the other hand, we have
2

(2.5)  dist?(x,span{z})dist *(y, span{z}) —

(o5} - ﬁ (. 2) (5, 2)

_ x2_<xvz>2 2_<y72> — - 1 T. >
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Comparing [(2.4) and (2.5), and taking note tiiat=dist*(z, span{y})|y||?, we finish our
proof for the case # 0.

WhenD = 0, thenz andy are linearly dependent. in this case we can prove the theorem by
straightforward verification. O

= =2y (1 Cwa)t w) ww) 2 (n2) <a:,y>> |

We point out that Theorem 2.1 is true also for complex inner product spaces.

3. APPLICATIONS
An application of Theorem 2.1 is the well known Griss inequality [2] (see also [3]).

Theorem 3.1(G. Gruss) Let f and g be two Lebesque integrable functions @nb). m, M
andn, N are four real numbers such that

(3.1) m< flx) <M, n<g(z)<N

for eachz € (a,b), then we have the Griss inequality

(3.2) /f x)dx — —a2/ f(x)dx/ g(x)dx

Proof. We consider the Hilbert spaclé’(a b) equped with an inner product defined by

< i(M —m)(N —n).

(3.3)

According to Theorerp 2|1, we have

() — ﬁ (2, 2) g, 2)

This inequality yields inequality (1.3) by (2.1).
Letz = f,y = g andz = 1. Note that bym < f(z) < M andn < g(x) < N, itis easy to
see that

(3.4) < dist(z, span{z}) dist(y, span{z}).

m+M\> (M —m)?
(3.5) (f(m) - ) <M=
and
(3.6) (g(x) - ”;N) <Wonk
Therefore,

=

b m 2 —m
(3.7) dist(f,span{1}) < (bia/ (f(z) — M; )2dq;> < M —

An identical argument yields
(3.8) dist(g,span{1}) < N2— .
Substituter, y andz in (3.4), and byf, g and 1, we obtair (3]2). O

Theorenj 2.1 also contains a useful inequality of A. Ostrowski [4] (seeldlso [3]).
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Theorem 3.2(Ostrowski) Leta = (ay,...,a,) andb = (by,...,b,) be two linearly indepen-
dent vectors. If the vectar = (z4, ..., z,) satisfies

n

i=1

=1
then

Zn 1 a?
(3.10) E P> : " 3
= z 1 a?) (Z’L 1 b?) (Ei:l a;bi)

The equality holds if and only |f

(3.11) Ty = nb’“%:l“ f’“Z’ 1,?” s, k=1,2,...
(>imiaf) (2oim, 07) — (205, aibi)

Proof. Substitutingz, y, = in inequality [1.3), by vectors, a, b, we have

2 > (a,b) 1 a
312 G (” " !\b\l2)2|!b|\2< &

Simple calculation shows that

]I

 lalPlplf? — {a. 6)*

that is, (3.1P). According to Theorem P.1, equality [in (3.13) holds if and only if, b are
linearly dependent, that is, there exist constanys such thatr = \a + pb. Taking the inner
product ofa andb, we get||a||*\ + (a,b) u = 0 and(a, b) A + ||b||*+ = 1. Solutions of the last
two equations are

(3.13) lx[|* >

—la.b 2
(3.14) ) N U
[all?[|b]|* = {a,b) [all2]|b]|> = (a, b)
thus
2p — b
3.15) _ lalPt—a.ba
[al[2[[b]|> = (a, b)
that is, [3.111). O
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