AN IDENTITY IN REAL INNER PRODUCT SPACES

JIANGUO MA

Department of Mathematics Zhengzhu University Henan, China

EMail: majg@zzu.edu.cn

Received: 10 March, 2007

Accepted: 10 May, 2007

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: Primary 26D15; Secondary 46C99.

Key words: Real inner product spaces, Equality, Grüss inequality.

Abstract: We obtain an identity in real inner product spaces that leads to the Grüss inequal-

ity and an inequality of Ostrowski.

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

44 >>

4

Page 1 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

- 1 Introduction 3
- 2 Main Result 4
- 3 Applications

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 2 of 10

Go Back

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

1. Introduction

The Grüss inequality was generalized by S.S. Dragomir to the inner product spaces in [1]. It turned out to be an inequality relative to the inner products and norms of vectors in inner product space, that is,

"Let $(H; \langle \cdot, \cdot \rangle)$ be an inner product space over $\mathbb{K}(\mathbb{K} = \mathbb{C}, \mathbb{R})$ and $e \in H$, $\|e\| = 1$. if $\phi, \gamma, \Phi, \Gamma$ are real or complex numbers and x, y are vectors in H such that the condition

(1.1)
$$\operatorname{Re} \langle \Phi e - x, x - \phi e \rangle \ge 0, \operatorname{Re} \langle \Gamma e - y, y - \gamma e \rangle \ge 0$$

holds, then

$$(1.2) |\langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle| \le \frac{1}{4} |\Phi - \phi| |\Gamma - \gamma|.$$

In this paper, we give an identity that yields the inequality

(1.3)
$$\left| \langle x, y \rangle - \frac{1}{\|z\|^2} \langle x, z \rangle \langle y, z \rangle \right|^2 \le \left[\|x\|^2 - \frac{1}{\|z\|^2} \langle x, z \rangle^2 \right] \left[\|y\|^2 - \frac{1}{\|z\|^2} \langle y, z \rangle^2 \right]$$

here $x, y, z \in H$, H is a real inner product space.

From inequality (1.3), we obtain the Grüss inequality and an inequality by A. Ostrowski.

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 3 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Main Result

Let x,y,z be three vectors in real inner product spaces. Denote by $Z:=\operatorname{span}\{z\}$ the linear subspace spanned by z, and $W:=\operatorname{span}\{x,z\}$ the linear subspace spanned by x and z, denote by $\operatorname{dist}(x,\operatorname{span}\{z\})=\inf_{-\infty< s<+\infty}\|x-sz\|$ for the distance between x and $\operatorname{span}\{z\}$, and $\operatorname{dist}(z,\operatorname{span}\{x,y\})=\inf_{-\infty< s,t<+\infty}\|z-(sx+ty)\|$. The main result of this paper is:

Theorem 2.1. Suppose x, y, z are three non-zero vectors in a real inner product space, then

$$\operatorname{dist}^{2}(x,\operatorname{span}\{z\})\operatorname{dist}^{2}(y,\operatorname{span}\{z\}) - \left|\langle x,y\rangle - \frac{1}{\|z\|^{2}}\langle x,z\rangle\langle y,z\rangle\right|^{2}$$
$$= \frac{\|y\|^{2}}{\|z\|^{2}}\operatorname{dist}^{2}(x,\operatorname{span}\{y\})\operatorname{dist}^{2}(z,\operatorname{span}\{x,y\}).$$

Proof. Let $D = \text{dist }^2(x, \text{span}\{y\}) ||y||^2$. It is easy to see that

(2.1)
$$D = ||x||^2 ||y||^2 - \langle x, y \rangle^2.$$

When $D \neq 0$, we determine the infimum of $J(s,t) = ||z - (sx + ty)||^2$ by discovering critical points of J(s,t). Simple calculus yields

$$J(s,t) = ||z||^2 - 2\langle x, z \rangle s - 2\langle y, z \rangle t + ||x||^2 s^2 + 2\langle x, y \rangle st + ||y||^2 t^2,$$

thus partial derivatives of J(s,t) are

(2.2)
$$\frac{\partial J}{\partial s} = 2\|x\|^2 s + 2\langle x, y \rangle t - 2\langle x, z \rangle \frac{\partial J}{\partial t} = 2\langle x, y \rangle s + 2\|y\|^2 t - 2\langle y, z \rangle.$$

Identity In Real Inner
Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 4 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Let
$$\frac{\partial J}{\partial s} = 0$$
 and $\frac{\partial J}{\partial t} = 0$, we obtain

(2.3)
$$s = \frac{1}{D} (\|y\|^2 \langle x, z \rangle - \langle y, z \rangle \langle x, y \rangle)$$
$$t = \frac{1}{D} (\|x\|^2 \langle y, z \rangle - \langle x, z \rangle \langle x, y \rangle).$$

Substituting for s and t in

$$J(s,t) = ||z||^2 - 2\langle x, z \rangle s - 2\langle y, z \rangle t + ||x||^2 s^2 + 2\langle x, y \rangle st + ||y||^2 t^2,$$

by (2.3), we obtain

(2.4)
$$\operatorname{dist}^{2}(z, \operatorname{span}\{x, y\}) = \frac{\|x\|^{2} \|y\|^{2} \|z\|^{2}}{D} \times \left(1 - \frac{\langle x, z \rangle^{2}}{\|x\|^{2} \|z\|^{2}} - \frac{\langle y, z \rangle^{2}}{\|y\|^{2} \|z\|^{2}} - \frac{\langle x, y \rangle^{2}}{\|x\|^{2} \|y\|^{2}} + 2 \frac{\langle x, z \rangle \langle y, z \rangle \langle x, y \rangle}{\|x\|^{2} \|y\|^{2} \|z\|^{2}}\right).$$

On the other hand, we have

(2.5)
$$\operatorname{dist}^{2}(x,\operatorname{span}\{z\})\operatorname{dist}^{2}(y,\operatorname{span}\{z\}) - \left|\langle x,y\rangle - \frac{1}{\|z\|^{2}}\langle x,z\rangle\langle y,z\rangle\right|^{2}$$

$$= \left(\|x\|^{2} - \frac{\langle x,z\rangle^{2}}{\|z\|^{2}}\right) \left(\|y\|^{2} - \frac{\langle y,z\rangle}{\|z\|^{2}}\right) - \left|\langle x,y\rangle - \frac{1}{\|z\|^{2}}\langle x,z\rangle\langle y,z\rangle\right|^{2}$$

$$= \|x\|^{2}\|y\|^{2} \left(1 - \frac{\langle x,z\rangle^{2}}{\|x\|^{2}\|z\|^{2}} - \frac{\langle y,z\rangle^{2}}{\|y\|^{2}\|z\|^{2}}\right)$$

$$- \frac{\langle x,y\rangle^{2}}{\|x\|^{2}\|y\|^{2}} + 2\frac{\langle x,z\rangle\langle y,z\rangle\langle x,y\rangle}{\|x\|^{2}\|y\|^{2}\|z\|^{2}}\right).$$

Identity In Real Inner
Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 5 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Comparing (2.4) and (2.5), and taking note that $D = \text{dist}^2(x, \text{span}\{y\}) ||y||^2$, we finish our proof for the case $D \neq 0$.

When D=0, then x and y are linearly dependent. in this case we can prove the theorem by straightforward verification.

We point out that Theorem 2.1 is true also for complex inner product spaces.

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

3. Applications

An application of Theorem 2.1 is the well known Grüss inequality [2] (see also [3]).

Theorem 3.1 (G. Grüss). Let f and g be two Lebesque integrable functions on (a,b). m,M and n,N are four real numbers such that

$$(3.1) m \le f(x) \le M, \quad n \le g(x) \le N$$

for each $x \in (a, b)$, then we have the Grüss inequality

(3.2)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(x)dx \int_{a}^{b} g(x)dx \right| \leq \frac{1}{4} (M-m)(N-n).$$

Proof. We consider the Hilbert space $L^2(a,b)$ equipped with an inner product defined by

(3.3)
$$\langle f, g \rangle = \frac{1}{b-a} \int_a^b f(x)g(x)dx.$$

According to Theorem 2.1, we have

(3.4)
$$\left| \langle x, y \rangle - \frac{1}{\|z\|^2} \langle x, z \rangle \langle y, z \rangle \right| \le \operatorname{dist}(x, \operatorname{span}\{z\}) \operatorname{dist}(y, \operatorname{span}\{z\}).$$

This inequality yields inequality (1.3) by (2.1).

Let x=f, y=g and z=1. Note that by $m \leq f(x) \leq M$ and $n \leq g(x) \leq N,$ it is easy to see that

(3.5)
$$\left(f(x) - \frac{m+M}{2} \right)^2 \le \frac{(M-m)^2}{4}$$

Identity In Real Inner
Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 7 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

and

(3.6)
$$\left(g(x) - \frac{n+N}{2}\right)^2 \le \frac{(N-n)^2}{4}.$$

Therefore,

(3.7)
$$\operatorname{dist}(f, \operatorname{span}\{1\}) \le \left(\frac{1}{b-a} \int_a^b (f(x) - \frac{M+m}{2})^2 dx\right)^{\frac{1}{2}} \le \frac{M-m}{2}.$$

An identical argument yields

(3.8)
$$\operatorname{dist}(g, \operatorname{span}\{1\}) \le \frac{N-n}{2}.$$

Substitute x, y and z in (3.4), and by f, g and 1, we obtain (3.2).

Theorem 2.1 also contains a useful inequality of A. Ostrowski [4] (see also [3]).

Theorem 3.2 (Ostrowski). Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ be two linearly independent vectors. If the vector $x = (x_1, \ldots, x_n)$ satisfies

(3.9)
$$\sum_{i=1}^{n} a_i x_i = 0, \quad \sum_{i=1}^{n} b_i x_i = 1,$$

then

(3.10)
$$\sum_{i=1}^{n} x_i^2 \ge \frac{\sum_{i=1}^{n} a_i^2}{\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) - \left(\sum_{i=1}^{n} a_i b_i\right)^2}.$$

The equality holds if and only if

(3.11)
$$x_k = \frac{b_k \sum_{i=1}^n a_i^2 - a_k \sum_{i=1}^n a_i b_i}{\left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) - \left(\sum_{i=1}^n a_i b_i\right)^2}, \quad k = 1, 2, \dots, n.$$

Identity In Real Inner
Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 8 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. Substituting x, y, z in inequality (1.3), by vectors x, a, b, we have

(3.12)
$$\left(\|x\|^2 - \frac{1}{\|b\|^2} \right) \left(\|a\|^2 - \frac{\langle a, b \rangle^2}{\|b\|^2} \right) \ge \frac{1}{\|b\|^2} \langle a, b \rangle^2.$$

Simple calculation shows that

(3.13)
$$||x||^2 \ge \frac{||a||^2}{||a||^2 ||b||^2 - \langle a, b \rangle^2},$$

that is, (3.10). According to Theorem 2.1, equality in (3.13) holds if and only if x,a,b are linearly dependent, that is, there exist constants λ,μ such that $x=\lambda a+\mu b$. Taking the inner product of a and b, we get $\|a\|^2\lambda+\langle a,b\rangle\,\mu=0$ and $\langle a,b\rangle\,\lambda+\|b\|^2\mu=1$. Solutions of the last two equations are

(3.14)
$$\lambda = \frac{-\langle a, b \rangle}{\|a\|^2 \|b\|^2 - \langle a, b \rangle^2}, \quad \mu = \frac{\|a\|^2}{\|a\|^2 \|b\|^2 - \langle a, b \rangle^2},$$

thus

(3.15)
$$x = \frac{\|a\|^2 b - \langle a, b \rangle a}{\|a\|^2 \|b\|^2 - \langle a, b \rangle^2},$$

that is, (3.11).

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

Title Page

Contents

Page 9 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

References

- [1] S.S. DRAGOMIR, A generalization of Grüss'inequality in inner product spaces and application, *J. Math. Anal. Appl.*, **237** (1999), 74–82.
- [2] G. GRÜSS, Über das maximum des absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx \frac{1}{(b-a)^2}\int_a^b f(x)dx\int_a^b g(x)dx$, Math. Z., **39** (1935), 215–226.
- [3] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK, *Classical and New Inequalities in Analysis*, Kluwer Academic Publisher, 1993.
- [4] A. OSTROWSKI, Vorlesungen Über Differential und Integralrechnung, Vol. 2, Basel, 1951, p. 289.

Identity In Real Inner Product Spaces

Jianguo Ma

vol. 8, iss. 2, art. 48, 2007

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756