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Abstract: We obtain an identity in real inner product spaces that leads to the Griiss inequal- Go Back
ity and an inequality of Ostrowski.
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1. Introduction

The Griss inequality was generalized by S.S. Dragomir to the inner product spaces
in [1]. It turned out to be an inequality relative to the inner products and norms of
vectors in inner product space, that is,

“Let (H;(-,-)) be an inner product space ol&(K = C,R) ande € H, ||| = 1.

if ¢,7,®,I" are real or complex numbers andy are vectors inH such that the Identity In Real Inner
CondMOn Product Spaces
Jianguo Ma
(1.2) Re (Pe —x,x — ¢e) > 0, Re(T'e —y,y —ve) >0 vol. 8, iss. 2, art. 48, 2007
holds, then
1 Title Page
(1.2) [ {z,y) = (z,e) {e;y) [ < 7@ = GI[l' =] ——
In this paper, we give an identity that yields the inequality <« »
1 2 < >
(1'3) <x’ y> - W <:L‘7 Z> <y7 z> Page 3 Of 10
1
2 2
< |hel? = o | 1ol - s ) Go Back
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herex,y,z € H, H is areal inner product space. Close

From inequality {.3), we obtain the Griss inequality and an inequality by A.
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2. Main Result

Letx,y, z be three vectors in real inner product spaces. Denofe By span{z} the
linear subspace spanned hyandWW := span{z, z} the linear subspace spanned by

x andz, denote bylist(z, span{z}) = ianr ||x — sz|| for the distance between
—oo<s<+00

x andspan{z}, anddist(z, span{z,y}) = intf . |z = (sz + ty)||. The main
—00<s,t<+00
result of this paper is:

Theorem 2.1. Supposer, y, z are three non-zero vectors in a real inner product
space, then

1 2
dist 2(‘1:7 span{z}) dist 2(y7 span{z}) - <l’, y> - W <I‘, Z> <y7 Z>
2
lyl?
1]
Proof. Let D = dist ?(x, span{y})||y||*. It is easy to see that
(2.1) D = [l|[lyl* — (2, 9)°.

WhenD # 0, we determine the infimum of(s, t) = ||z— (sz+ty)||? by discovering
critical points of.J (s, t). Simple calculus yields

J(s,t) = |[2lI* = 2w, 2) s = 2{y, 2) t + [|[|*s” + 2 {z,y) st + [ly[|**,

thus partial derivatives of (s, t) are

dist ?(z, span{y}) dist ?(z, span{z, y}).

22) O —allalPs 42yt -2, 2)
S
oJ
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Let % =0 and% = (0, we obtain

23) 5= = (Il (2.2) — {9, 2) (. 9)

= 5l (9, ) — (@, 2) {0,

Substituting fors andt in

Identity In Real Inner

Product S
J(s,t) = ||2l]° = 2z, 2) s = 2 (y, 2) t + [[x]|*s® + 2 (z, y) st + [[y]|*F*, o
by (2.3), we obtain vol. 8, iss. 2, art. 48, 2007
‘ z|12|y2] 2|2
(2.4) dlstQ(z,span{x,y}) = w Title Page
o1 (z,2) B (y, 2)* B (z,y)? +2<x, 2) (y, z) (z,y) Contents
2zl AlylZiz]? llP]lyl? Pyl =l )
44 44
On the other hand, we have < >
: , 1 ’ Page 5 of 10
(25) dlst2(x,span{z}) dlstQ(y,span{z}) - <C(],y> - W <ZL‘, Z> <y7 Z) 298>0
5 5 Go Back
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Comparing £.4) and @.5), and taking note thaD = dist?(z,span{y})||y|
finish our proof for the cas® ## 0.

WhenD = 0, thenz andy are linearly dependent. in this case we can prove the
theorem by straightforward verification. O

2 we

We point out that Theorern. 1is true also for complex inner product spaces.
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3. Applications

An application of Theorera.1is the well known Griss inequalit] (see alsoJ]).

Theorem 3.1 (G. Gruss).Let f and g be two Lebesque integrable functions on
(a,b). m, M andn, N are four real numbers such that

(31) m < f(l‘) < M n < g(ZL‘) < N Identity In Real Inner
for eachz € (a, b), then we have the Griiss inequality Prc;?::;j:::aes
1 b b vol. 8, iss. 2, art. 48, 2007
62 | [ e - o [ s [t
1 .
S—(M—m)(N—n). Title Page
4
Contents
Proof. We consider the Hilbert spade’(a, b) equipped with an inner product de-
fined by 44 de
< >
(3.3)
Page 7 of 10
According to Theoren?.1, we have Go Back
1
(3.4) (x,y) — W (x, 2) (y, z)| < dist(x,span{z}) dist(y, span{z}). Full Screen
z
cl
This inequality yields inequalityl(3) by (2.1). ose
Letz = f,y = gandz = 1. Note that bym < f(z) < M andn < g(z) < N, it journal of inequalities
is easy to see that in pure and applied
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issn: 1443-575k
2 4

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:majg@zzu.edu.cn
http://jipam.vu.edu.au

and
(3.6) (g(ar) _nd N )2 cWonf

Therefore,

(3.7) dist(f,span{1}) < (

An identical argument yields

b—a

N —n
5
Substituter, y andz in (3.4), and byf, g and 1, we obtaind.2). H

(3.8) dist(g, span{1}) <

Theorem?2.1also contains a useful inequality of A. Ostrowskj (see also 3)).

Theorem 3.2 (Ostrowski). Leta = (ay,...,a,) andb = (by,...,b,) be two lin-
early independent vectors. If the vector (z4, ..., x,) satisfies

(3.9) Zn: a;zr; =0, zn:bﬂi =1,
i=1 i=1

then
n n 2
(3.10) Soats nZz»:; G
i1 (Dimr @) Qi ) — (i aibi)
The equality holds if and only if

(3.11) b Doy af — ag Yoy aib;

T =

=12 ...,n.

? k 9 9
(Z?:l ‘%2) (Z?:l bzz) - (Z?:l aibz‘)2
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Proof. Substitutingz, y, z in inequality (L.3), by vectorsr, a, b, we have

, 1 ) (a,b)? 1 )
12 (It - ) (”“” B ) = o

Simple calculation shows that

2
(313) I L —
lal[?[[6]]* = (a, b)
that is, 3.10. According to Theoren?.1, equality in ¢.13 holds if and only if
x,a,bare linearly dependent, that is, there exist constanisuch thatr = Aa+ ub.
Taking the inner product of andb, we get||a|*\ + (a,b) x = 0 and (a,b) A +
16]|>+ = 1. Solutions of the last two equations are

—(a,0) _ la]®

G AT ERE —@n® " el — (e
thus
15 b= Gwbya
alPoIE — {a.b)
thatis, 3.11). ]
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