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Abstract

In the article ”N. Ujević, A generalization of the pre-Grüss inequality and ap-
plications to some quadrature formulae, J. Inequal. Pure Appl. Math., 3(2), Art.
13, 2002” error bounds for some quadrature formulae are established. Here
we prove that all inequalities (error bounds) obtained in this article are sharp.
We also establish a new sharp averaged midpoint-trapezoid inequality and give
applications in numerical integration.
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1. Introduction
In recent years a number of authors have considered error inequalities for some
known and some new quadrature rules. For example, this topic is considered in
[1] – [6] and [11] – [14].

In this paper we consider the midpoint, trapezoid and averaged midpoint-
trapezoid quadrature rules. These rules are also considered in [12], where some
new improved versions of the error inequalities for the mentioned rules are de-
rived.

Here we first prove that all inequalities obtained in [12] are sharp. Second,
we specially consider the averaged midpoint-trapezoid quadrature rule. In [6]
it is shown that the last mentioned rule has a better estimation of error than the
well-known Simpson’s rule and in [13] it is shown that this rule is an optimal
quadrature rule. We give a new sharp error bound for this rule. Finally, we give
applications in numerical integration.
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2. Midpoint Inequality
Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be an
absolutely continuous function whose derivativef ′ ∈ L2(a, b). We define the
mapping

Φ(t) =

{
t− 2a+b

3
, t ∈

[
a, a+b

2

]
t− a+2b

3
, t ∈

(
a+b
2

, b
]

such thatΦ0(t) = Φ(t)/ ‖Φ‖2, where

‖Φ‖2
2 =

∫ b

a

(Φ(t))2 dt =
(b− a)3

36
.

We have

Q(f ; a, b) =

∫ b

a

Φ0(t)f
′(t)dt

=
2√

b− a

[
f(a) + f

(
a + b

2

)
+ f(b)− 3

b− a

∫ b

a

f(t)dt

]
.

In [12] we can find the following midpoint inequality

(2.1)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)3/2

2
√

3
C1,

where

(2.2) C1 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [Q(f ; a, b)]2

} 1
2

.
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Proposition 2.1. The inequality (2.1) is sharp in the sense that the constant1
2
√

3
cannot be replaced by a smaller one.

Proof. We first define the mapping

(2.3) f(t) =

{
1
2
t2, t ∈

[
0, 1

2

]
1
2
t2 − t + 1

2
, t ∈

(
1
2
, 1
]

and note thatf is a Lipschitzian function.
On the other hand, each Lipschitzian function is an absolutely continuous

function [10, p. 227].
Let us now assume that the inequality (2.1) holds with a constantC > 0, i.e.

(2.4)

∣∣∣∣f (a + b

2

)
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ C(b− a)3/2C1,

whereC1 is defined by (2.2). Choosinga = 0, b = 1 andf defined by (2.3), we
get ∫ 1

0

f(t)dt =
1

24
, f

(
1

2

)
=

1

8
such that the left-hand side of (2.4) becomes

(2.5) L.H.S.(2.4) =
1

12
.

We also find thatC1 = 1
2
√

3
such that the right-hand side of (2.4) becomes

(2.6) R.H.S.(2.4) =
C

2
√

3
.

From (2.4) – (2.6) we getC ≥ 1
2
√

3
, proving thatC = 1

2
√

3
is the best possible

in (2.1).
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Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 22

J. Ineq. Pure and Appl. Math. 7(1) Art. 8, 2006

http://jipam.vu.edu.au

3. Trapezoid Inequality
Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be an
absolutely continuous function whose derivativef ′ ∈ L2(a, b). We define the
mapping

χ(t) =

{
t− 5a+b

6
, t ∈

[
a, a+b

2

]
t− a+5b

6
, t ∈

(
a+b
2

, b
]

such thatχ0(t) = χ(t)/ ‖χ‖2, where

‖χ‖2
2 =

∫ b

a

(χ(t))2 dt =
(b− a)3

36
.

We have

P (f ; a, b) =

∫ b

a

χ0(t)f
′(t)dt

=
1√

b− a

[
f(a) + 4f

(
a + b

2

)
+ f(b)− 6

b− a

∫ b

a

f(t)dt

]
.

In [12] we can find the following trapezoid inequality:

(3.1)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ (b− a)3/2

2
√

3
C2,

where

(3.2) C2 =

{
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a
− [P (f ; a, b)]2

} 1
2

.
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Proposition 3.1. The inequality (3.1) is sharp in the sense that the constant1
2
√

3
cannot be replaced by a smaller one.

Proof. We define the mapping

(3.3) f(t) =
1

2
t2 − 1

2
t.

It is obvious thatf is an absolutely continuous function. Let us now assume
that the inequality (3.1) holds with a constantC > 0, i.e.

(3.4)

∣∣∣∣f(a) + f(b)

2
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣ ≤ C(b− a)3/2C2,

whereC2 is defined by (3.2).
Choosinga = 0, b = 1 andf defined by (3.3), we get∫ 1

0

f(t)dt =
1

12
and f(0) = f(1) = 0.

Thus, the left-hand side of (3.4) becomes

(3.5) L.H.S.(3.4) =
1

12
.

The right-hand side of (3.4) becomes

(3.6) R.H.S.(3.4) =
C

2
√

3
.

From (3.4) – (3.6) we getC ≥ 1
2
√

3
, proving that 1

2
√

3
is the best possible in

(3.1).
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4. Averaged Midpoint-Trapezoid Inequality
Let I ⊂ R be a closed interval anda, b ∈ Int I, a < b. Let f : I → R be
an absolutely continuous function whose derivativef ′ ∈ L2(a, b). We now
consider a simple quadrature rule of the form

(4.1)
f(a) + 2f

(
a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

=
1

2

[
f

(
a + b

2

)
+

f(a) + f(b)

2

]
(b− a)−

∫ b

a

f(t)dt = R(f).

It is not difficult to see that (4.1) is a convex combination of the midpoint
quadrature rule and the trapezoid quadrature rule. In [6] it is shown that (4.1)
has a better estimation of error than the well-known Simpson’s quadrature rule
(when we estimate the error in terms of the first derivativef ′ of integrandf ). In
[12] the following inequality is proved

(4.2)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a)3/2

4
√

3
C3,

where

(4.3) C3 =

[
‖f ′‖2

2 −
[f(b)− f(a)]2

b− a

− 1

b− a

(
f(a)− 2f

(
a + b

2

)
+ f(b)

)2
] 1

2

.
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Proposition 4.1. The inequality (4.2) is sharp in the sense that the constant1
4
√

3
cannot be replaced by a smaller one.

Proof. We first define the mapping

(4.4) f(t) =

{
1
2
t2 − 1

4
t, t ∈

[
0, 1

2

]
1
2
t2 − 3

4
t + 1

4
, t ∈

(
1
2
, 1
]

and note thatf is a Lipschitzian function.
Let us now assume that the inequality (4.2) holds with a constantC > 0, i.e.

(4.5)

∣∣∣∣∣f(a) + 2f
(

a+b
2

)
+ f(b)

4
(b− a)−

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ C(b− a)3/2C3,

whereC3 is defined by (4.3). Choosinga = 0, b = 1 andf defined by (4.4), we
get ∫ 1

0

f(t)dt = − 1

48
, f(0) = f(1) = f

(
1

2

)
= 0

such that the left-hand side of (4.5) becomes

(4.6) L.H.S.(4.5) =
1

48
.

We also find thatC3 = 1
4
√

3
such that the right-hand side of (4.5) becomes

(4.7) R.H.S.(4.5) =
C

4
√

3
.

From (4.5) – (4.7) we getC ≥ 1
4
√

3
, proving thatC = 1

4
√

3
is the best possible

in (4.2).
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5. A Sharp Error Inequality
In [12] we can find the following inequality

(5.1) S(f, g)2 ≤ S(f, f)S(g, g),

where

(5.2) S(f, g) =

∫ b

a

f(t)g(t)dt− 1

b− a

∫ b

a

f(t)dt

∫ b

a

g(t)dt

− 1

‖Ψ‖2

∫ b

a

f(t)Ψ(t)dt

∫ b

a

g(t)Ψ(t)dt

andΨ satisfies

(5.3)
∫ b

a

Ψ(t)dt = 0,

while

‖Ψ‖2 =

∫ b

a

Ψ2(t)dt.

In [14] we can find a variant of the following lemma.

Lemma 5.1. Letf ∈ C1 [a, c], g ∈ C1 [c, b] be such thatf(c) = g(c). Then

h(t) =

{
f(t), t ∈ [a, c]

g(t), t ∈ [c, b]

is an absolutely continuous function.
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Theorem 5.2. Let f : [0, 1] → R be an absolutely continuous function whose
derivativef ′ ∈ L2(0, 1). Then

(5.4)

∣∣∣∣∫ 1

0

f(t)dt− 1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]∣∣∣∣
≤ 1

4
√

3

√
‖f ′‖2 − 2

[
f

(
1

2

)
− f(0)

]2

− 2

[
f(1)− f

(
1

2

)]2

.

The inequality (5.4) is sharp in the sense that the constant1
4
√

3
cannot be re-

placed by a smaller one.

Proof. We define the functions

(5.5) p(t) =

{
t− 1

4
, t ∈

[
0, 1

2

)
t− 3

4
, t ∈

[
1
2
, 1
]

and

(5.6) Ψ(t) =

{
t, t ∈

[
0, 1

2

)
t− 1, t ∈

[
1
2
, 1
] .

It is not difficult to verify that

(5.7)
∫ 1

0

p(t)dt =

∫ 1

0

Ψ(t)dt = 0.
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We also have

(5.8) ‖p‖2 =

∫ 1

0

p2(t)dt =
1

48
,

(5.9) ‖Ψ‖2 =

∫ 1

0

Ψ2(t)dt =
1

12
,

(5.10)
∫ 1

0

p(t)Ψ(t)dt =
1

48
.

From (5.1), (5.2) and (5.3) we get

(5.11)

[∫ 1

0

p(t)f ′(t)dt− 1

‖Ψ‖2

∫ 1

0

p(t)Ψ(t)dt

∫ 1

0

f ′(t)Ψ(t)dt

]2

≤

[
‖p‖2 − 1

‖Ψ‖2

(∫ 1

0

p(t)Ψ(t)dt

)2
]

×

[
‖f ′‖2 −

(∫ 1

0

f ′(t)dt

)2

− 1

‖Ψ‖2

(∫ 1

0

f ′(t)Ψ(t)dt

)2
]

.

Integrating by parts, we obtain∫ 1

0

p(t)f ′(t)dt =

∫ 1
2

0

(
t− 1

4

)
f ′(t)dt +

∫ 1

1
2

(
t− 3

4

)
f ′(t)dt(5.12)

=
1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]
−
∫ 1

0

f(t)dt
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and ∫ 1

0

f ′(t)Ψ(t)dt =

∫ 1
2

0

tf ′(t)dt +

∫ 1

1
2

(t− 1)f ′(t)dt(5.13)

= f

(
1

2

)
−
∫ 1

0

f(t)dt.

We introduce the notations

(5.14) i =

∫ 1

0

f(t)dt,

(5.15) q =
1

4

[
f(0) + 2f

(
1

2

)
+ f(1)

]
.

From (5.11) – (5.15) and (5.8) – (5.10) it follows that

(5.16)

[
(q − i)− 1

4

(
f

(
1

2

)
− i

)]2

≤ 1

64

[
‖f ′‖2 − [f(1)− f(0)]2 − 12

(
f

(
1

2

)
− i

)2
]

or

(5.17) i2 − 2qi +
4

3
q2 +

1

48
[f(1)− f(0)]2

− ‖f ′‖2
+ 16

(
f

(
1

2

))2

− 32f

(
1

2

)
q ≤ 0.
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If we now introduce the notations

(5.18) β = −2q,

(5.19) γ =
4

3
q2 +

1

48
[f(1)− f(0)]2 − ‖f ′‖2

+ 16

(
f

(
1

2

))2

− 32f

(
1

2

)
q

then we have

(5.20) i2 + βi + γ ≤ 0.

Thus,i ∈ [i1, i2], where

i1 =
−β −

√
β2 − 4γ

2
, i2 =

−β +
√

β2 − 4γ

2
.

In other words,

−β

2
−
√

β2 − 4γ

2
≤ i ≤ −β

2
+

√
β2 − 4γ

2

or

(5.21)

∣∣∣∣i +
β

2

∣∣∣∣ ≤
√

β2 − 4γ

2
.

We have

(5.22) β2−4γ =
1

12

[
‖f ′‖2 − 2

[
f

(
1

2

)
− f(0)

]2

− 2

[
f(1)− f

(
1

2

)]2
]

.
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From (5.21) and (5.22) we easily find that (5.4) holds.
We have to prove that (5.4) is sharp. For that purpose, we define the function

(5.23) f(t) =

{
1
2
t2 − 1

4
t + 1

32
, t ∈

[
0, 1

2

)
1
2
t2 − 3

4
t + 9

32
, t ∈

[
1
2
, 1
] .

From Lemma5.1we see that the above function is absolutely continuous. If we
substitute the above function in the left-hand side of (5.4) then we get

(5.24) L.H.S.(5.4) =
1

48
.

If we substitute the above function in the right-hand side of (5.4) then we get

(5.25) R.H.S.(5.4) =
1

48
.

From (5.24) and (5.25) we conclude that (5.4) is sharp.

Theorem 5.3. Let f : [a, b] → R be an absolutely continuous function whose
derivativef ′ ∈ L2(a, b). Then

(5.26)

∣∣∣∣∫ b

a

f(t)dt− b− a

4

[
f(a) + 2f

(
a + b

2

)
+ f(b)

]∣∣∣∣
≤ (b− a)3/2

4
√

3

(
‖f ′‖2 − 2

b− a

[
f

(
a + b

2

)
− f(a)

]2

− 2

b− a

[
f(b)− f

(
a + b

2

)]2
) 1

2

.
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The above inequality is sharp in the sense that the constant1/(4
√

3) cannot be
replaced by a smaller one.

Remark 1. We have better estimates than (5.26). For example, we have the
inequality

(5.27)

∣∣∣∣b− a

4

[
f(a) + 2f

(
a + b

2

)
+ f(b)

]
−
∫ b

a

f(t)dt

∣∣∣∣
≤ 1

8
‖f ′‖∞ (b− a)2.

However, note that the estimate (5.27) can be applied only iff ′ is bounded. On
the other hand, the estimate (5.26) can be applied for absolutely continuous
functions iff ′ ∈ L2(a, b).

There are many examples where we cannot apply the estimate (5.27) but we
can apply (5.26).

Example 5.1.Let us consider the integral
∫ 1

0

3
√

sin t2dt. We have

f(t) =
3
√

sin t2 and f ′(t) =
2t cos t2

3
3
√

sin2 t2

such thatf ′(t) → ∞, t → 0 and we cannot apply the estimate (5.27). On the
other hand, we have∫ 1

0

[f ′(t)]
2
dt ≤ 4

9
max
t∈[0,1]

t2 cos t2

sin t2

∫ 1

0

dt
3
√

sin t2
≤ 16

9
,

i.e. ‖f ′‖2 ≤
4
3

and we can apply the estimate (5.26).

http://jipam.vu.edu.au/
mailto:ujevic@pmfst.hr
http://jipam.vu.edu.au/


Sharp Error Bounds for Some
Quadrature Formulae and

Applications

Nenad Ujević
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6. Applications in Numerical Integration
Let π = {x0 = a < x1 < · · · < xn = b} be a given subdivision of the interval
[a, b] such thathi = xi+1 − xi = h = (b− a)/n. We define

(6.1) σn(f) =
n−1∑
i=0

[
b− a

n
‖f ′‖2

2 − (f(xi+1)− f(xi))
2

−
(

f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

,

(6.2) ηn(f) =
n−1∑
i=0

[
b− a

n
‖f ′‖2

2 − 2

(
f

(
xi + xi+1

2

)
− f(xi)

)2

− 2

(
f(xi+1)− f

(
xi + xi+1

2

))2
] 1

2

and

(6.3) ωn(f) =

[
(b− a) ‖f ′‖2

2 −
1

n
(f(b)− f(a))2

] 1
2

.

Theorem 6.1. Let π be a given subdivision of the interval[a, b] and let the
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assumptions of Theorem5.2hold. Then

(6.4)

∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ b− a

4
√

3n
σn(f) ≤ b− a

4
√

3n
ωn(f),

whereσn(f) andωn(f) are defined by (6.1) and (6.3), respectively.

Proof. We have

(6.5)
h

4

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]
−
∫ xi+1

xi

f(t)dt

=

∫ xi+1

xi

Ki(t)f
′(t)dt,

where

Ki(t) =

 t− 3xi+xi+1

4
, t ∈

[
xi,

xi+xi+1

2

]
t− xi+3xi+1

4
, t ∈

(xi+xi+1

2
, xi+1

] .

From Proposition4.1we obtain∣∣∣∣h4
[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]
−
∫ xi+1

xi

f(t)dt

∣∣∣∣
≤ h3/2

4
√

3

[
‖f ′‖2

2 −
1

h
(f(xi+1)− f(xi))

2
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− 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

.

If we sum (6.5) over i from 0 to n − 1 and apply the above inequality then
we get∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ h3/2

4
√

3

[
n−1∑
i=0

‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2

− 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2
] 1

2

.

From the above relation and the facth = (b−a)/n we see that the first inequality
in (6.4) holds.

Using the Cauchy inequality we have
n−1∑
i=0

[
‖f ′‖2

2 −
1

h
(f(xi+1)− f(xi))

2

] 1
2

(6.6)

≤ n

[
‖f ′‖2

2 −
1

b− a

n−1∑
i=0

(f(xi+1)− f(xi))
2

] 1
2

≤ n

[
‖f ′‖2

2 −
1

b− a

1

n
(f(b)− f(a))2

] 1
2

.
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Since

‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2 − 1

h

(
f(xi)− 2f

(
xi + xi+1

2

)
+ f(xi+1)

)2

≤ ‖f ′‖2
2 −

1

h
(f(xi+1)− f(xi))

2 ,

we easily conclude that the second inequality in (6.4) holds, too.

Remark 2. The second inequality in (6.4) is coarser than the first inequality. It
may be used to predict the number of steps needed in the compound rule for a
given accuracy of the approximation. Of course, we shall use the first inequality
in (6.4) to obtain the error bound. Note also that in this last case we use the
same valuesf(xi) to calculate the approximation of the integral

∫ b

a
f(t)dt and

to obtain the error bound and recall that function evaluations are generally
considered the computationally most expensive part of quadrature algorithms.

Theorem 6.2.Under the assumptions of Theorem6.1we have∣∣∣∣∣
∫ b

a

f(t)dt− h

4

n−1∑
i=0

[
f(xi) + 2f

(
xi + xi+1

2

)
+ f(xi+1)

]∣∣∣∣∣
≤ b− a

4
√

3n
ηn(f) ≤ b− a

4
√

3n
ωn(f),

whereηn(f) is defined by (6.2).

Proof. The proof of this theorem is similar to the proof of Theorem6.1. Here
we use Theorem5.3.
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