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ABSTRACT. In this paper we consider Kurepa’s functiii{z) [3]. We give some recurrent rela-
tions for Kurepa’s function via appropriate sequences of rational functions and gamma function.
Also, we give some inequalities for Kurepa’s functifif{z) for positive values of:.
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1. KUREPA'S FUNCTION K(z)

Buro Kurepa considered, in the article [3], the function of left factdrighs a sum of facto-
rials!n = 0! + 1!+ 2! 4+ --- 4+ (n — 1)!. Let us use the standard notation:

(1.1) K(n) = nz_:z'
=0

Sum [1.1) corresponds to the sequer®®3422 in [5]. Analytical extension of the function
(1.1) over the set of complex numbers is determined by the integral:

(1.2) K(z) = /OO Ly
0

t—1 "
which converges foRe z > 0 [4]. For function K (z) we use the ternKurepa’s function It is
easily verified that Kurepa’s functioR (z) is a solution of the functional equation:

(1.3) K(z)— K(z—1)=T(z2).

Let us observe that sind€(z — 1) = K(z) — I'(z), it is possible to make the analytic contin-
uation of Kurepa’s functiori<(z) for Rez < 0. In that way, the Kurepa’s functiof'(z) is a
meromorphic function with simple polesat= —1 andz = —n (n > 3) [4]. Let us emphasize
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that in the following consideration, in Sectidnis 2 and 3, it is sufficient to use only the fact that
function K (z) is a solution of the functional equatidn (IL.3).

2. REPRESENTATION OF THE KUREPA'S FUNCTION VIA SEQUENCES OF
POLYNOMIALS AND THE GAMMA FUNCTION
buro Kurepa considered, in articlel [4], the sequences of following polynomials:
(2.1) Po(z) = (2 = n)Pua(2) + 1,

with an initial memberP,(z) = 1. On the basis of |4] we can conclude that the following
statements are true:

Lemma 2.1. For eachn € N andz € C we have explicitly

n—1 J
(2.2) P(z)=14+> [[(z—n+i).

=0 i=0
Theorem 2.2.For eachn € Nandz € C\ (Z~ U {0,1,...,n}) is valid:
(2.3) K(z)=K(z—n)+ (P.(2) — 1) - T'(z — n).

3. REPRESENTATION OF THE KUREPA'S FUNCTION VIA SEQUENCES OF RATIONAL
FUNCTIONS AND THE GAMMA FUNCTION

Let us observe that on the basis of a functional equation for the gamma function
I'(z + 1) = 2I'(»), it follows that the Kurepa function is the solution of the following func-
tional equation:

(3.1) Kiz+1)—(z+ 1)K(2)+2K(z—1) =0.
Forz € C\{0}, based on(3]1), we have:
z+1

(3.2) K(z—-1)=

K(2) = ZK(z41) = Qu(2)K(2) — Ru(2)K (2 + 1),

for rational functions; (z) = %, R;(z) = 1 overC\{0}. Next, forz € C\{0,1}, based on
(3.7), we obtain

z 1
(3.3) K(Z_2>_z—1K(Z_1)_z—1K(Z)
oz z+1 1 1
3 z—l( z K(z) zK(z+1)) z—lK(Z)
= L K()— oK+ 1) = Qa(2)K(2) — Re(2)K (2 +1),
for rational functions@Q»(z) = %, Ra2(z) = -2 over C\{0,1}. Thus, for values: €
C\{0,1,...,n — 1}, based on (3|1), by mathematical induction we have:
(3.4) K(z—n)=Qu(2)K(2) — R.(2)K (2 + 1),
for rational functions),,(z), R,.(z) overC\{0, 1,...,n — 1}, which fulfill the same recurrent
relations:
_z—n+2 B 1
(3.5) Qu(z) = an—l(Z) PE——— 1Qn—2(2)
and
_z—n+2 B 1
(3.6) Ry (2) = mRn—l(z) PE—— 1Rn—2(2),
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with different initial functionsQ, »(z) and R, »(z).
Based on the previous consideration we can conclude:

Lemma 3.1. For eachn € Nandz € C\{0,1,...,n — 1} let the rational functior?,,(z) be
determined by the recurrent relation (B.5) with initial functias(z) = = andQ,(z2) = 5.
Thus the sequenceg, (z) has an explicit form

(3.7) HEEED Y | Zil

Lemma 3.2. For eachn € Nandz € C\{0,1,...,n — 1} let the rational functionR,(z) be
determined by the recurrent relatio.6) with initial functioRs(z) = 1 and Ry(z) = ;.
Thus the sequende, (=) has an explicit form

n—1 j 1
(3.8) R, (2) jzog —
Theorem 3.3.For eachn € Nandz € C\ (Z~ U {0,1,...,n — 1}) we have
(3.9) K(z)=K(z—n)+ (Qu(z) = 1) - T'(z+1)
and
(3.10) K(z) =K(z—n)+ R,(2) - I'(z+1).

4. SOME INEQUALITIES FOR KUREPA’S FUNCTION

In this section we consider the Kurepa functifir{z), given by an integral representation
(1.9), for positive values of. Thus the Kurepa function is positive and in the following consid-
eration we give some inequalities for the Kurepa function.

Lemma 4.1. For z € [0, 1] the following inequalities are true:

1 5 7 9
(41) F(ZE+§)<I—Z$+5
and
(4.2) (z+2)T(x+1) > g.

Proof. It is sufficient to use an approximation formula for the functign: + 1) with a polyno-
mial of the fifth degree:

Ps(z) = —0.1010678 2° + 0.4245549 2* — 0.6998588 2 + 0.9512363 2% — 0.5748646 = + 1

which has an absolute errpr(z)] < 5 - 107° for values of argument € [0, 1] [1] (formula
6.1.35, page 257). To prove the firstinequality, for values|0, 1/2], itis necessary to consider
an equivalent inequality obtained by the following substitutieax + 1/2 (thusT'(x +1/2) =
['(t + 1)/t). To prove the first inequality, for valuese (1/2, 1], it is necessary to consider an
equivalent inequality by the following substitution= —1/2 (thusI'(z+1/2) = I'(t+1)). O

Remark 4.2. We note that for a proof of the previous inequalities it is possible to use other
polynomial approximations (of a lower degree) of functidiis + 1/2) andI'(z + 1) for values
x € [0,1].

Lemma 4.3. For z € [0, 1] the following inequality is true

9
4.3) K(z) < e
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Proof. Let us note that the first derivation of Kurepa'’s functiiix), for valuesz € [0, 1], is
given by the following integral [4]:

/ o logt
(4.4) K'(z) = / et 280 g,
0 t—1
Fort € (0,00)\{1} Karamata’s inequality is truep®; < J- [2]. Hence, forz € [0,1] the
following inequality is true:
/ o logt o 1
(4.5) K'(z) = / e~to 28" gt < / et* /24t = T (91: + —) .
; t—1 ; 2

Next, on the basis of Lemnja 4.1 and inequality |(4.5) «fat [0, 1], the following inequalities
are true:

(4.6) K(x)S/Oxf(tJr%)dtS/ox(t2—£t+§)dt§gx.

U
Theorem 4.4.For x > 3 the following inequality is true
(4.7) K(z—1) <T(x),

while the equality is true for = 3.

Proof. Based on the functional equatidn (1.3) the inequality| (4.7)xfor 3, is equivalent to
the following inequality:

(4.8) K(z) < 2I'(z).

Let us represeri8, o) = |J,-; [n,n + 1). Then, we prove that the inequali.8) is true, by
mathematical induction over intervdis, n + 1) (n > 3).

(i) Letx € [3,4). Then the following decomposition hold& (z) = K(x — 3) + I'(z —
2) + I'(z — 1) + I'(z). Hence, by Lemma 4.3, the following inequality is true:
(4.9) K(z) < g(m —3)+I(z—-2)+T(x—-1)+TI(2),
because: — 3 € [0,1). Next, by Lemma 411, the following inequality is true:
(4.10) %(x _3) < (2= 1)(x —3)T(x —2),

because: — 3 € [0, 1). Now, based orf (4/9) and (4]10) we conclude that the inequality
is true:
(4.11) K)<(z—1)(z—-3)'(z—2)+T'(x—2)+T'(x—1)+I'(z) =2 (z).

(i¢) Letthe inequality[(4]8) be true far e [n,n+ 1) (n > 3).
(i1i) Forz € [n+ 1,n+ 2) (n > 3), based on the inductive hypothesis, the following
inequality is true:

(4.12) Kiz)=K(x—-1)+T(z) <2I'(z — 1) + I'(z) < 2I'(z).

0
Remark 4.5. The inequality[(4.B) is an improvement of the inequalities of Arandjélavi(z) <
1+ 2I'(x), given in [4], with respect to the intervédl, o).

J. Inequal. Pure and Appl. Mathb(4) Art. 84, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SOME INEQUALITIES FORKUREPA' S FUNCTION 5

Corollary 4.6. For eachk € N andx > k + 2 the following inequality is true
K(x —k)

— <1,

Fx—k+1) ~

while the equality is true for = k + 2.

(4.13)

Theorem 4.7.For eachk € Nandz > k + 2 the following double inequality is true:

K(z) < Poa(@)+1
Fxz+1) = Pa(x)
while the equality is true for = k + 2.

(4.14) Ry(z) <

Rk(CE),

Proof. For eachk € N andx > k let us introduce the following functios,(z) =
ST (& — 7). Thus, the following relations:

and
(4.16) Gi(z) =T(x — k) - (Py(x) — 1)

are true. The inequalityz;(z) < K(x) is true forz > k. Hence, based on (4,15), the left
inequality in [4.14) is true for alt > %k + 2. On the other hand, based ¢n (4.16) and (4.13), for
x > k + 2, the following inequality is true:

K(x) K(x —k) K(x —k)
4.17 =1+ —— =1+
e A R X R Y T X R
:1+K(x—k)/f‘(x—k+1) <14 1 Pea(r)+1
Py () Py () Py ()
Hence, based on (4.15), the right inequality{in (#.14) holds far &l k& + 2. O
Corollary 4.8. If for eachk € N we mark
P 1
(4.18) Ae) = Ru(a) and Be(o) = P p )
Pk_l(fb)

thus, the following is true:

(419)  Au(x) < A (z) < % < Ben(w) < Bolw) (x> k+3)

and

(4.20) Aula), Byla) ~ © A By(a) — Ag(a) = P}:ff’f;) ~ o w—oo)
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