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Abstract

In this paper we consider Kurepa’s function K(z) [3]. We give some recurrent
relations for Kurepa’s function via appropriate sequences of rational functions
and gamma function. Also, we give some inequalities for Kurepa’s function
K(x) for positive values of x.
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1. Kurepa’s Function K(z)

Ðuro Kurepa considered, in the article [3], the function of left factorial!n as a
sum of factorials!n = 0! + 1! + 2! + · · · + (n − 1)!. Let us use the standard
notation:

(1.1) K(n) =
n−1∑
i=0

i!.

Sum (1.1) corresponds to the sequenceA003422 in [5]. Analytical extension of
the function (1.1) over the set of complex numbers is determined by the integral:

(1.2) K(z) =

∫ ∞

0

e−t t
z − 1

t− 1
dt,

which converges forRe z > 0 [4]. For functionK(z) we use the termKurepa’s
function. It is easily verified that Kurepa’s functionK(z) is a solution of the
functional equation:

(1.3) K(z)−K(z − 1) = Γ(z).

Let us observe that sinceK(z − 1) = K(z) − Γ(z), it is possible to make the
analytic continuation of Kurepa’s functionK(z) for Re z ≤ 0. In that way,
the Kurepa’s functionK(z) is a meromorphic function with simple poles at
z = −1 andz = −n (n ≥ 3) [4]. Let us emphasize that in the following con-
sideration, in Sections2 and3, it is sufficient to use only the fact that function
K(z) is a solution of the functional equation (1.3).
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2. Representation of the Kurepa’s Function via
Sequences of Polynomials and the Gamma
Function

Ðuro Kurepa considered, in article [4], the sequences of following polynomials:

(2.1) Pn(z) = (z − n)Pn−1(z) + 1,

with an initial memberP0(z) = 1. On the basis of [4] we can conclude that the
following statements are true:

Lemma 2.1. For eachn ∈ N andz ∈ C we have explicitly:

(2.2) Pn(z) = 1 +
n−1∑
j=0

j∏
i=0

(z − n + i).

Theorem 2.2.For eachn ∈ N andz ∈ C\ (Z− ∪ {0, 1, . . . , n}) is valid:

(2.3) K(z) = K(z − n) +
(
Pn(z)− 1

)
· Γ(z − n).
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3. Representation of the Kurepa’s Function via
Sequences of Rational Functions and the Gamma
Function

Let us observe that on the basis of a functional equation for the gamma function
Γ(z + 1) = zΓ(z), it follows that the Kurepa function is the solution of the
following functional equation:

(3.1) K(z + 1)− (z + 1)K(z) + zK(z − 1) = 0.

For z ∈ C\{0}, based on (3.1), we have:

(3.2) K(z − 1) =
z + 1

z
K(z)− 1

z
K(z + 1) = Q1(z)K(z)−R1(z)K(z + 1),

for rational functionsQ1(z) = z+1
z , R1(z) = 1

z over C\{0}. Next, for z ∈
C\{0, 1}, based on (3.1), we obtain

K(z − 2) =
z

z − 1
K(z − 1)− 1

z − 1
K(z)(3.3)

=
(3.2)

z

z − 1

(
z + 1

z
K(z)− 1

z
K(z + 1)

)
− 1

z − 1
K(z)

=
z

z − 1
K(z)− 1

z − 1
K(z + 1)

= Q2(z)K(z)−R2(z)K(z + 1),

for rational functionsQ2(z) = z
z−1 , R2(z) = 1

z−1 over C\{0, 1}. Thus, for
valuesz ∈ C\{0, 1, . . . , n − 1}, based on (3.1), by mathematical induction we
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have:

(3.4) K(z − n) = Qn(z)K(z)−Rn(z)K(z + 1),

for rational functionsQn(z), Rn(z) overC\{0, 1, . . . , n − 1}, which fulfill the
same recurrent relations:

(3.5) Qn(z) =
z − n + 2
z − n + 1

Qn−1(z)− 1
z − n + 1

Qn−2(z)

and

(3.6) Rn(z) =
z − n + 2
z − n + 1

Rn−1(z)− 1
z − n + 1

Rn−2(z),

with different initial functionsQ1,2(z) andR1,2(z).
Based on the previous consideration we can conclude:

Lemma 3.1. For eachn ∈ N andz ∈ C\{0, 1, . . . , n−1} let the rational func-
tion Qn(z) be determined by the recurrent relation (3.5) with initial functions
Q1(z) = z+1

z andQ2(z) = z
z−1 . Thus the sequenceQn(z) has an explicit form:

(3.7) Qn(z) = 1 +
n−1∑
j=0

j∏
i=0

1

z − i
.

Lemma 3.2. For eachn ∈ N andz ∈ C\{0, 1, . . . , n−1} let the rational func-
tion Rn(z) be determined by the recurrent relation (3.6) with initial functions
R1(z) = 1

z andR2(z) = 1
z−1 . Thus the sequenceRn(z) has an explicit form:

(3.8) Rn(z) =
n−1∑
j=0

j∏
i=0

1

z − i
.
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Theorem 3.3.For eachn ∈ N andz ∈ C\ (Z− ∪ {0, 1, . . . , n− 1}) we have

(3.9) K(z) = K(z − n) +
(
Qn(z)− 1

)
· Γ(z + 1)

and

(3.10) K(z) = K(z − n) + Rn(z) · Γ(z + 1).
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4. Some Inequalities for Kurepa’s Function
In this section we consider the Kurepa functionK(x), given by an integral rep-
resentation (1.2), for positive values ofx. Thus the Kurepa function is positive
and in the following consideration we give some inequalities for the Kurepa
function.

Lemma 4.1. For x ∈ [0, 1] the following inequalities are true:

(4.1) Γ

(
x +

1

2

)
< x2 − 7

4
x +

9

5

and

(4.2) (x + 2)Γ(x + 1) >
9

5
.

Proof. It is sufficient to use an approximation formula for the functionΓ(x+1)
with a polynomial of the fifth degree:

P5(x) = −0.1010678 x5 + 0.4245549 x4 − 0.6998588 x3

+ 0.9512363 x2 − 0.5748646 x + 1

which has an absolute error|ε(x)| < 5 · 10−5 for values of argumentx ∈
[0, 1] [1] (formula 6.1.35, page 257). To prove the first inequality, for values
x ∈ [0, 1/2], it is necessary to consider an equivalent inequality obtained by the
following substitutiont = x+1/2 (thusΓ(x+1/2) = Γ(t+1)/t). To prove the
first inequality, for valuesx ∈ (1/2, 1], it is necessary to consider an equivalent
inequality by the following substitutiont = x− 1/2 (thusΓ(x + 1/2) = Γ(t +
1)).
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Remark 1. We note that for a proof of the previous inequalities it is possible to
use other polynomial approximations (of a lower degree) of functionsΓ(x+1/2)
andΓ(x + 1) for valuesx ∈ [0, 1].

Lemma 4.2. For x ∈ [0, 1] the following inequality is true:

(4.3) K(x) ≤ 9

5
x.

Proof. Let us note that the first derivation of Kurepa’s functionK(x), for values
x ∈ [0, 1], is given by the following integral [4]:

(4.4) K
′
(x) =

∫ ∞

0

e−ttx
log t

t− 1
dt.

For t ∈ (0,∞)\{1} Karamata’s inequality is true:log t
t−1

≤ 1√
t

[2]. Hence, for
x ∈ [0, 1] the following inequality is true:

(4.5) K
′
(x) =

∫ ∞

0

e−ttx
log t

t− 1
dt ≤

∫ ∞

0

e−ttx−1/2dt = Γ

(
x +

1

2

)
.

Next, on the basis of Lemma4.1and inequality (4.5), for x ∈ [0, 1], the follow-
ing inequalities are true:

(4.6) K(x) ≤
∫ x

0

Γ

(
t +

1

2

)
dt ≤

∫ x

0

(
t2 − 7

4
t +

9

5

)
dt ≤ 9

5
x.
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Theorem 4.3.For x ≥ 3 the following inequality is true:

(4.7) K(x− 1) ≤ Γ(x),

while the equality is true forx = 3.

Proof. Based on the functional equation (1.3) the inequality (4.7), for x ≥ 3, is
equivalent to the following inequality:

(4.8) K(x) ≤ 2Γ(x).

Let us represent[3,∞) =
⋃∞

n=3 [n, n + 1). Then, we prove that the inequality
(4.8) is true, by mathematical induction over intervals[n, n + 1) (n ≥ 3).

(i) Let x ∈ [3, 4). Then the following decomposition holds:K(x) = K(x −
3) + Γ(x − 2) + Γ(x − 1) + Γ(x). Hence, by Lemma4.2, the following
inequality is true:

(4.9) K(x) ≤ 9

5
(x− 3) + Γ(x− 2) + Γ(x− 1) + Γ(x),

becausex − 3 ∈ [0, 1). Next, by Lemma4.1, the following inequality is
true:

(4.10)
9

5
(x− 3) ≤ (x− 1)(x− 3)Γ(x− 2),

becausex − 3 ∈ [0, 1). Now, based on (4.9) and (4.10) we conclude that
the inequality is true:

K(x) ≤ (x− 1)(x− 3)Γ(x− 2) + Γ(x− 2) + Γ(x− 1) + Γ(x)(4.11)

= 2Γ(x).
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Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 13

J. Ineq. Pure and Appl. Math. 5(4) Art. 84, 2004

http://jipam.vu.edu.au

(ii) Let the inequality (4.8) be true forx ∈ [n, n + 1) (n ≥ 3).

(iii) For x ∈ [n + 1, n + 2) (n ≥ 3), based on the inductive hypothesis, the
following inequality is true:

(4.12) K(x) = K(x− 1) + Γ(x) ≤ 2Γ(x− 1) + Γ(x) ≤ 2Γ(x).

Remark 2. The inequality (4.8) is an improvement of the inequalities of Arandjelović:
K(x) ≤ 1 + 2Γ(x), given in [4], with respect to the interval[3,∞).

Corollary 4.4. For eachk ∈ N andx ≥ k + 2 the following inequality is true:

(4.13)
K(x− k)

Γ(x− k + 1)
≤ 1,

while the equality is true forx = k + 2.

Theorem 4.5. For eachk ∈ N andx ≥ k + 2 the following double inequality
is true:

(4.14) Rk(x) <
K(x)

Γ(x + 1)
≤ Pk−1(x) + 1

Pk−1(x)
·Rk(x),

while the equality is true forx = k + 2.

Proof. For eachk ∈ N and x > k let us introduce the following function
Gk(x) =

∑k−1
i=0 Γ(x− i). Thus, the following relations:

(4.15) Gk(x) = Γ(x + 1) ·Rk(x)
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and

(4.16) Gk(x) = Γ(x− k) · (Pk(x)− 1)

are true. The inequalityGk(x) < K(x) is true forx > k. Hence, based on
(4.15), the left inequality in (4.14) is true for allx ≥ k + 2. On the other hand,
based on (4.16) and (4.13), for x ≥ k + 2, the following inequality is true:

K(x)

Gk(x)
= 1 +

K(x− k)

Gk(x)
= 1 +

K(x− k)

Γ(x− k)(Pk(x)− 1)
(4.17)

= 1 +
K(x− k)/Γ(x− k + 1)

Pk−1(x)
≤ 1 +

1

Pk−1(x)

=
Pk−1(x) + 1

Pk−1(x)
.

Hence, based on (4.15), the right inequality in (4.14) holds for allx ≥ k+2.

Corollary 4.6. If for eachk ∈ N we mark:

(4.18) Ak(x) = Rk(x) and Bk(x) =
Pk−1(x) + 1

Pk−1(x)
·Rk(x),

thus, the following is true:

(4.19) Ak(x) < Ak+1(x) <
K(x)

Γ(x + 1)
≤ Bk+1(x) < Bk(x) (x ≥ k + 3)

and

(4.20) Ak(x), Bk(x) ∼ 1

x
∧ Bk(x)−Ak(x) =

Rk(x)

Pk−1(x)
∼ 1

xk
(x →∞).
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