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Abstract

In this paper we consider Kurepa’s function K (z) [3]. We give some recurrent
relations for Kurepa’s function via appropriate sequences of rational functions
and gamma function. Also, we give some inequalities for Kurepa’s function
K(x) for positive values of z.
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buro Kurepa considered, in the articlé,[the function of left factorialn as a
sum of factorialdn = 0! + 1! + 2! 4 --- + (n — 1)!. Let us use the standard
notation:

(1.1) K(n) = Zw

Sum (L.1) corresponds to the sequené@03422 in [5]. Analytical extension of

the function (..1) over the set of complex numbers is determined by the integral:

(1.2) K(z) = /Oo et 1dt,
0

which converges foRe z > 0 [4]. For functionK (z) we use the terrKurepa’s
function It is easily verified that Kurepa’s functioR (z) is a solution of the
functional equation:

(1.3) K(z)— K(z—1)=TI(z).

Let us observe that sind€(z — 1) = K(z) — I'(2), it is possible to make the
analytic continuation of Kurepa’'s functioR' (z) for Rez < 0. In that way,
the Kurepa’s functionk'(z) is a meromorphic function with simple poles at
z = —landz = —n (n > 3) [4]. Let us emphasize that in the following con-
sideration, in Sectiong and3, it is sufficient to use only the fact that function
K (z) is a solution of the functional equatiof.@).
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Buro Kurepa considered, in articl€][ the sequences of following polynomials:

(2.2) P.(z) = (z —n)P,_1(2) + 1,

with an initial member?,(z) = 1. On the basis of4] we can conclude that the
following statements are true:

Lemma 2.1. For eachn € N andz € C we have explicitly

(2.2) P(z)=1+> [[(z—n+i).

=0 i=0
Theorem 2.2.For eachn € Nandz € C\ (Z~ U {0,1,...,n}) is valid:
(2.3) K(z)=K(z—n)+ (Py(z) = 1) - I'(z — n).
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Let us observe that on the basis of a functional equation for the gamma function

I'(z + 1) = 2I'(»), it follows that the Kurepa function is the solution of the
following functional equation:

(3.1) Kiz+1)—(z+1)K(2)+ 2zK(z—1) =0.
Forz € C\{0}, based on{.1), we have:

z+1

3.2) K(z—1) = 2Ty - EK(Z 1) = Q()K(2) — Ri(2)K(z + 1),

for rational functions,(z) = %%, Ry(z) = 1 overC\{0}. Next, forz €

z !

C\{0, 1}, based ong.1), we obtain
z 1

(3.3) K(Z—Q):Z_lK(Z_l)_Z_lK(Z)
= (UK - K+ ) - K ()
= oK) - K+ )

= Q2(2)K(2) — Ry(2)K(z + 1),

for rational functionsQ»(z) = %, Ra(z) = -1 overC\{0,1}. Thus, for
valuesz € C\{0,1,...,n — 1}, based ong.1), by mathematical induction we
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have:
(3.4) K(z—n)=Q,(2)K(2) — R.(2)K(2+ 1),

for rational functions,,(z), R,(z) overC\{0, 1,...,n — 1}, which fulfill the
same recurrent relations:

(3:5) Qu(z) = 2200 1) — 1 Qua(2)
and
(3.6) Ra(z) = 220 2R 4 (2) = —— < Raa(2),

with different initial functions@; »(z) and R, »(z).
Based on the previous consideration we can conclude:

Lemma 3.1. For eachn € Nandz € C\{0,1,...,n—1} let the rational func-
tion Q),,(z) be determined by the recurrent relatiod.) with initial functions
Q1(z) = 2 andQs(z) = = (2) has an explicit form

n—1

(3.7) :1+ZHZ
7=0

=0

Lemma 3.2. For eachn € Nandz € C\{0,1,...,n—1} let the rational func-
tion R, (z) be determined by the recurrent relatiod.) with initial functions
Ri(z) = L and Ry(z) = ;. Thus the sequende, (=) has an explicit form

—

n—

(3.8) = H —

1=

.
Il
o
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Theorem 3.3.For eachn € Nandz € C\ (Z~ U {0,1,..

(3.9
and

(3.10)

K(z)=K(z—n)+ (Qu(z) — 1) -T(z+1)

K(z) = K(z—n)+ R,(2) - I'(z +1).

=

1}) we have
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In this section we consider the Kurepa functiitz), given by an integral rep-
resentation.2), for positive values of. Thus the Kurepa function is positive
and in the following consideration we give some inequalities for the Kurepa
function.

Lemma 4.1. For z € [0, 1] the following inequalities are true:

1 7 9
(4.2) r (ZL‘ + —> <2t —-x4= Some Inequalities For Kurepa’s
2 4 5 Function
and Branko J. MaleSevic
9
4.2 +2)(z+1) > -.
(4.2) (@ (= ) 5) Title Page
Proof. It is sufficient to use an approximation formula for the functign: + 1) Contents
with a polynomial of the fifth degree:
44 44
P5(z) = —0.1010678 2° + 0.4245549 z* — 0.6998588 2 < >
+0.9512363 2° — 0.5748646 = + 1
Go Back
which has an absolute err¢s(z)| < 5 - 107 for values of argument € Close
[0,1] [1] (formula 6.1.35, page 257). To prove the first inequality, for values _
x € [0,1/2], itis necessary to consider an equivalent inequality obtained by the Quit
following substitutiont = z+1/2 (thusI'(x+1/2) = T'(¢+1)/t). To prove the Page 8 of 13
first inequality, for values € (1/2, 1], it is necessary to consider an equivalent
inequality by the following substitutioh= x — 1/2 (thusI'(z + 1/2) = I'(t + 3. Ineq. Pure and Appl. Math. 5(4) Art. 84, 2004
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Remark 1. We note that for a proof of the previous inequalities it is possible to

use other polynomial approximations (of a lower degree) of functigns-1/2)
andT'(z + 1) for valuesz € [0, 1].

Lemma 4.2. For z € [0, 1] the following inequality is true

(4.3) K(z) < 2

—=T.
)
Proof. Let us note that the first derivation of Kurepa’s functi@ix), for values

x € [0, 1], is given by the following integral{:

/ o logt
(4.4) K'(z) = / et 28 g
Fort € (0,00)\{1} Karamata’s inequality is truele! < Ji% [Z]. Hence, for
x € |0, 1] the following inequality is true:

/ > logt * 1
(45) K (z)= / etpe 28 g < / e 24t =T (a: + —) .
0 t—1 0 2

Next, on the basis of Lemm&aZland inequality 4.5), for 2 € [0, 1], the follow-
ing inequalities are true:

x 1 z 79 9
4.6 K(z) < C(t+=)dt< 22—t ) dt < 2.
@) K< [r(iegjas [[(#-Ter )<l
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Theorem 4.3. For x > 3 the following inequality is true

4.7)

K(z—1) < T(x),

while the equality is true fox = 3.

Proof. Based on the functional equatioh §) the inequality {.7), for z > 3, is
equivalent to the following inequality:

(4.8)

K(x) <2I'(z).

Let us represer8, oo) = |J, -, [n,n + 1). Then, we prove that the inequality

(4.9
(4)

is true, by mathematical induction over intervalsn + 1) (n > 3).

Letz € [3,4). Then the following decomposition hold&: (z) = K (z —
3)+'(z —2)+'(z — 1)+ ['(z). Hence, by Lemmad.2, the following
inequality is true:

49 K@) < g(a: )4 T(r—2) + Tz — 1) + (x),

becauser — 3 € [0,1). Next, by Lemma4.1, the following inequality is
true:

(4.10) S —3) <~ 1)x— 3 ~2)

becauser — 3 € [0,1). Now, based on4.9) and @.10 we conclude that
the inequality is true:
(411) K(z) <(z—1)(z—=3)'(z—2)+ ' (z—2)+(x— 1)+ '(x)

= 2I'(z).
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(i7) Letthe inequality 4.8) be true forz € [n,n + 1) (n > 3).

(i7i) Forz € [n+ 1,n 4+ 2) (n > 3), based on the inductive hypothesis, the

following inequality is true:
412) K@) =Kx-1)+T(zr)<2l'(x —1)+I'(z) < 2I'(x).

]

Remark 2. The inequality4.8) is an improvement of the inequalities of Arandjelovi¢

K(x) <1+ 2[(x), given in [], with respect to the intervgB, co).
Corollary 4.4. For eachk € Nandxz > k + 2 the following inequality is true

K(x —k) -1

4.1 -
(4.13) (z—k+1) — 7
while the equality is true for = k + 2.

Theorem 4.5. For eachk € N andx > k + 2 the following double inequality
is true:

K@) _ Pa(@)+1
F($ + 1) - Pk,1<l’>

while the equality is true for = k + 2.

Proof. For eachk € N andx > k let us introduce the following function
Gi(x) = ¥ 0 I(z — 4). Thus, the following relations:

(4.15) Gr(x) =T(z+ 1) - Ri(x)
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and
(4.16) Gu(a) = T(x — k) - (Py(x) — 1)

are true. The inequalit¢m,(z) < K(z) is true forx > k. Hence, based on
(4.19), the left inequality in4.14) is true for allz > k£ + 2. On the other hand,
based on4.16 and @.13), for x > k + 2, the following inequality is true:

K(x) K(x —k) K(x —k)
4.17 14+ Y14
N N Grl@) o~ B)(Be() — 1) - ,
. K(x . k})/r(l’ _k 4 1) 14 1 Some Inequ;::tr:i?kl):r?r Kurepa’s
P ( ) 1Pk1(x> a Pk*l(x) Branko J. MaleSevic
_ Iga(z) +
- Peorlz) Title Page
Hence, based od (15, the rightinequality in4.14) holds for allx > k+2. [ Content
ontents
Corollary 4.6. If for eachk € N we mark > N
P, 1
(418)  Aye) = Rile) and By() = 2L g, « |
Pk_l(l‘)
thus, the following is true: Go Back
(4.19) Au(x) < Aen(0) < —F) B ) < Bulr) (1> k+3) close
. E\T E+1\T F(x—l— 1) > DT E\T T = Quit
and Page 12 of 13
(420) Ak(l’), Bk(l’) ~ ; /\ Bk(f[') - Ak(..'lf) = Pk—l(ﬂf) ~ E (..'L' - OO) J. Ineq. Pure and Appl. Math. 5(4) Art. 84, 2004
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