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Abstract

In this paper, we study the Hyers-Ulam stability problem for the following func-
tional equation

(E(K)) Z | f ako(y)k ™ dwg (k) = |®|f(2)g(y), =,y € G,

ed
where G is a IocaIIy compact group, K is a compact subgroup of G, wy is the
normalized Haar measure of K, ® is a finite group of K-invariant morphisms
of Gand f,g : G — C are continuous complex-valued functions such that f
satisfies the Kannappan type condition, for all z,y, 2 € G

(*) / f(zkak™ hyh ™ dwg (k)dwi (h)
JKJK

/ f(zk’ylf'/z;z']fl)(iw'[\'(k)(lwA'(/z).
JKJK

Our results generalize and extend the Hyers-Ulam stability obtained for the Wil-
son’s functional equation.

2000 Mathematics Subject Classification: 39B72.
Key words: Functional equations, Hyers-Ulam stability, Wilson equation, Gelfand
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Let G be a locally compact group. Lét be a compact subgroup 6f. Let

wri be the normalized Haar measure ®f A mappingy : G — G is a

morphism of G if ¢ is a homeomorphism off onto itself which is either
a group-homomorphism, i.e.p(zy) = p(z)p(y), x,y € G), or a group-
antihomomorphism, i.e. ((zy) = ¢(y)e(x), z,y € G). We denote by
Mor(G) the group of morphism of/ and® a finite subgroup of\/or(G) of

a K-invariant morphisms ofr (i.e. ¢(K) C K). The number of elements of S

a finite group® will be designated by®|. The Banach algebra of bounded Generalized Wilson’s Equation
measures of’ with complex values is denoted By (G)) and the Banach space

of all complex measurable and essentially bounded functiors by L..(G).

C(G) designates the Banach space of all continuous complex valued functions
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pee Go Back
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whereo is an involution ofG. It is also a generalization of the equations

(1.4) /K Flakyk dok (k) = f(@)gly), @,y €.

(15) /K F(kyk™)dwie (k)

/ Fako (kD dwic(k) = 2f(x)g(y), 2y € G,

(1.6) / faky) () dw (F) = f(@)g(y), 2.y € G,

1.7) /K F (k)X (k) dw (k)

/ flzko(y k)dwg (k) = 2f(x)g(y), x,y € G,

(1.8) /K f(aky)dog (k) = f(@)g(y), w5 € G,
and

(1.9) /K F (k) dwie (k) +

/K flako(y))dwic (k) = 2f (x)g(y), =,y € G.
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If G is a compact group, the equatiadh) may be considered as a generaliza-

tion of the equations

(1.10) /G flatyt )t = f(2)gy),  wy € G,

(1.11) /G F(atyt ™)t + /G Flato(y)t )t = 2/ ()gy),  z.y € G,

and
(112) Z/ Flate(y)t)dt = |0 f()g(y), .y € G,
ped
Furthermore the following equations are also a particular cask Df (

(1.13) > flaey) = @[ f(2)g(y),  zyeG,

ped

@19 X [ fke)don(h) = 9l @gly). vy e G

ped

and

@15) Y [ fekel)Xhden(®) = @l v EC.
ped

wherey is a unitary character oK.
In the next section, we note some results for later use.
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In what follows, we study general properties. etk and® given as above

Proposition 2.1 ([]). For an arbitrary fixedr € ®, the mapping

o — P
prHpoT

is a bijection and for allz, y € GG, we have

21 > / Flakg(r Ydwp (k

ped Pped

Proposition 2.2. Letp € & and f € C(G), then we have

/ f(zkp(hy)k™)dwg (k
K

i) If f satisfies{), then for alla, z,y, z € G, we have

/K /K f(zhp(ykak™ )R~ dwi (h)dwr (k)
:/K/Kf(zhgo(xk:yk;_l)h_l)dwK(h)dWK(k?)-
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and
/K/K/Kf(amD(Zklykllhlxhll)hl)dwK(h)dwK(kl)dwK(hl)
:/K/K/Kf(ahgp(zklxkflhlyhl_l)h—l)dwK(h)dwK<kl)dwK(hl)‘

Proof. By easy computations.

O
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The main result is the following theorem.

Theorem 3.1.Leté > 0 and let(f, g) €C(G) such thatf satisfies the condition
(*) and the functional inequality

@D |X [ fakplk donh) - 0lf(2)ol) <6 wy€C.
pED
Then
i) f, g are bounded or
i) fis unbounded ang satisfies the equation
@2) Y [ stakek dox(d) = @la(@laly). .y e G

ped

iii) ¢is unboundedf satisfies the equatiori (1). Furthermore iff = 0, then
g is a solution of 8.2).

Proof. Let (f, g) be a solution of the inequalityd(1), such thatf is unbounded
and satisfies the conditioh) then for allz, y, = € G, we get by using Proposi-
tions2.1and2.2

Z / (xko(y

ped

||| f(2) Ndwi (k) — |@|g(x)g(y)
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= |3 [ Itk e ()~ 92 (:)g(a)g(o)

ped

> /K / Fh(zke(y)k™ YA dwg (h)dw (k)

ped Ped

— |®[f(= Z/ (zko(y)k ™ dw (k)

IN

ped
On Hyers-Ulam Stability of
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Since f is unbounded it follows thaj is a solution of the functional equation
(3.2). For the second case Ief, g) be a solution of the inequality3(1) such
that f satisfies the conditiorf] andg is unbounded then for all, y, z € GG, one

has
Bllg(=)] |3 / F(kep(y)k)dwr (k) — |©]f (2)g(y)
=S / Blg(=)f (akep(y)k)dwr (k) — |0Pg(=) F(2)g(y)
< f(zho(y)h ke (2)k™ Y dwi (h)dwg (k)
> )2,
—Jlg(2) S / F(ak(y)k ) dw (k)
f(xhp(2)h " ko(y)k ™) dwi (h)dwi (k)
L2
~|®lgly F ke () ) dwrc (k)
2%
+19lla)| [ [ Flako(@k don(h) - 91f()o(:)
PYed
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< f(zkp(y)k  hp(2)h Y dwg ()
L%l

= @lg(:) (o)) (1)

. Fk (I hiply)h ™)) darc(h)
Ll

= 10lg(u) (ko (o)) doe(1)
+19lla0)| [ [ £ (@ho(h) dew () = 91 (@)a(:)

PpedP

< 2|®|5 + [®[|g(y)]o.

Sinceg is unbounded it follows thaf is a solution of {.D). Now let f # 0,
then there exists € G such thatf(a) # 0. Letn =

T ( and let

PO = GG !Z/fa’w

dwK(k:)

By using Propositior?.2 it follows that F’ satisfies the conditior*§, and by
using the inequality3.1) one hagF'(z) —

9(x)| < ;. sinceg is unbounded it
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follows thatF" is unbounded. Furthermore for ally € G we have

> [ Plakelyh do(h) ~ [8]F@)g(0
:m Byes | k) deoe () o (k)
- Bl > / Flakp(@)k™)dwx (K)g(y)
< S Z/ Z/ Flaho(w)h k() ko ()
— @[ f(ahp(x)h™")g(y) |dwi (k)
<.
From the first case it follows thatis a solution of 8.2). O

Corollary 3.2. Letéo > 0and let(f, g) €C(G) such thatf satisfies the condition
(*) and the functional inequality

(3.3)

; flakyk™")dwi (k)

+/Kf(xka(y)k:_1)dw;<(k)—2f($)9(y) <4, =ryed,
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whereo is an involution onZ. Then

i) f, g are bounded or

i) fis unbounded and satisfies the equation

(3.4) /K g(zkyk™Hdwg (k)

+/ g(xk:a(y)k_l)dw[((k) - 2g(x)g(y), T,y € G. On Hyers-Ulam Stability of
K Generalized Wilson's Equation
iii) ¢ is unboundedf satisfies the equatiori.(5). Furthermore iff = 0, then Belaid Boulkhalene
g is a solution of 8.4).
- Title Page
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The following theorems are a particular case of Theogen
If K C Z(G), then we have

Theorem 4.1.Leté > 0 and letf, g be a complex-valued functions Ghsuch
that f satisfies the Kannappan condition.{)

*) fzay) = f(zyz),  zyed
and the functional inequality

(4.1) D fae(y) — [0 f(x)gw)| <6, wy e

ped

Then

i) f, g are bounded or

i) fis unbounded and is a solution of the functional equation

(4.2) > gwe(y) = |®lg(x)g(y), @,y €G,

ped

iii) ¢ is unbounded and is a solution of {.13. Furthermore iff # 0 theng
is a solution of {.2).
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Corollary 4.2. Letd > 0 and letf, g be a complex-valued functions Ghsuch
that f satisfies the Kannappan condition

*) fzay) = f(zyz),  z,ye€d
and the functional inequality
(4.3) |f(zy) + f(zo(y)) = 2f(x)g(y)| <6, =z,y €@,

whereo is an involution onZ. Then
i) f, g arebounded or

i) fis unbounded ang is a solution of the functional equation
(4.4) 9(xy) + g(zo(y)) = 29(x)g(y),

iii) ¢is unbounded and is a solution of {.3). Furthermore iff # 0 theng
is a solution of §.4).

Remark 4.1. If G is abelian, then the conditiori ] holds.

If f(kxh) = x(k)f(z)x(h), k,h € K andz € G, wherey is a character of
K ([17]), then we have

Theorem4.3.Letd > 0Oandlet(f, g) €C(G) suchthatf (kzh) = x (k) f(z)x(h),
k,he K,x €@,

xr,y € G,

*) /K /K £ (eheehy X (B)X(h)dwore (k) dw ()
- /K /K F (2hyha )X (KX (h)dwre (k) dwre ()
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and

(4.5) dWK(k) -

|| f(z)g(y)| <9, z,y € G.

Z/fﬂﬂw

ped

Then
i) f, g are bounded or
i) fis unbounded ang is a solution of the functional equation

46 Y / Flake(y)) Rk dwrc (k) = [01f () f (1),

ped

x,y € G,

iii) ¢is unbounded and is a solution of {.15. Furthermore iff # 0 theng
is a solution of {.6).

Corollary 4.4. Letéo > 0O andlet(f, g) € C(G) such thatf (kxzh)
k,he K,z € G,

) / / f (k)

and

= x(k)f(@)x(h),

IX(h)dwg (k)dwg (h)

- [ [ ek

IX(h)dwg (k)dwg (h)

(4.7)

; f(xky)x(k)dw (k)

/ka:a

k)dwr (k) —2f(x)g(y)| <6, z.y€G.
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whereo is an involution ofG. Then

i) f, g are bounded or

i) fis unbounded and is a solution of the functional equation

(4.8) /K g (eky)X (k) dwe (k)

+ [ otk RO x () = 20090, €

iii) ¢ is unbounded and is a solution of {.7). Furthermore iff # 0 theng
is a solution of §.8).

Remark 4.2. If the algebraywy « M (G) » Ywy iS commutative then the con-
dition (*) holds [4].

In the next theorem we assume ttfato be bi/ -invariant (i.e. f(hak) =
f(z),h, ke K,z € G([7],[10), then we have

Theorem 4.5.Let§ > 0 and let(f,¢g) € C(G) such thatf(kzh) = f(x),
k,he K,x €@,

*) /K/Kf(zk:xhy)dw;((k)dw;{(h)
— [ [ steyha)don oo,

x?y7Z€G
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and

@9) |3 [ fakp)don(b) - 91 (@) <5 2y €G.

ped

Then
i) f, g are bounded or
i) fis unbounded ang is a solution of the functional equation
@10) Y [ flakou)den(k) = [Blf@)F ). ny€G.
ped K

iii) ¢is unbounded and is a solution of {.14). Furthermore iff # 0 theng
is a solution of £.10).

Corollary 4.6 ([©]). Lets > 0 and let(f, g) € C(G) such thatf(kxh) = f(x),
k.he K,z €@,

) /K /K f(skahy)deore (K)deore (1)

:/K/Kf(zkyhx)dw;{(/{:)dw[((h), z,y,z € G
and
@13) | [ flaky)don(t
+/Kf(:1cka(y))dw;<(k:) —2f(x)g(y)| <6, z,y €G.
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whereo is an involution ofG. Then

i) f, g arebounded or

i) fis unbounded ang is a solution of the functional equation

@12) [ glaky)dox(h
+ Lg(xka(y))dw[((k‘) =2g(x)g(y), x,y € G.

iii) ¢ is unbounded and is a solution of {.9). Furthermore iff # 0 theng
is a solution of {.12).

Remark 4.3. If the algebrawy x M (G) xwg is commutative then the condition
(*) holds [4].

In the next corollary, we assume th@t= K is a compact group

Theorem 4.7.Letd > 0 and let(f, g) be complex measurable and essentially
bounded functions o' such thatf is a central function andf, g) satisfy the
inequality

(4.13)

Z/Gf(ﬂfw(y)t‘l)dt— | f(z)g(v)| <6,  =yeQ.

ped

Then

i) fandg are bounded or
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i) fis unbounded ang is a solution of the functional equation

(4.14) Z/Gg(xtw(y)t‘l)dt— [®lg(z)g(y),  zyedC.

ped

iii) ¢ is unbounded ang = 0.

Proof. Let (f,g) € L>(G). Sincef is central p], then it satisfies the condition
(*) ([4]). For (iii), if f # 0theng is a solution of the functional equatiof.(4).
In view of the proposition ing] we get the fact thag is continuous. Sincé&' is
compact thery is bounded. m
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