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ABSTRACT. Given the harmonic megnofthe numbers; (i = 1,2,3)and & € (0, min{xy, x2, z3}/u}).
we determine the best power mean exponerasid ¢ such thatM,(z; — tu) < (1 —t)u <

M, (z; — tu), wherep andg only depend on. Also, for¢ > 0 we similarly handle the estimates

My (z; +tp) < (1+t)p < My(@i + tp).
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1. INTRODUCTION

Three pointsd), FE, F', one on each of the sides of a triangl&C, form a triangleD E F that
partitions the original one into four sub-triangles. The Erdds-Debrunner inequality says that

min{Al, AQ, Ag} S A4,

whereA;, Ay, As are the areas of the corner triangles, ands the area of the central triangle.
In [3], Janous conjectured that the optimal improvement would be given by

M_q(Ay, Az, Ag) < Ay
whereM _, denotes th¢—g)-power mean with
~ In(3/2)
~ In2

(Janous proved the above inequality with= 1. See the classical reference [5] for more on
power means). In our paper [4] we confirmed Janous’ conjecture. In the course of our proof we
revealed some equivalent formulations of this optimal result, one of which is:
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2 VANIA MASCIONI

Theorem 1.1([4, Cor. 6]). Letp > In(3/2)/1n(2). Then for all triangles with sides, b andc
and semi-perimetet, the inequality

s—a\’ n s—0b\" n s—c\? S 3
a b c -2
is valid. In terms of power means,

(1.1) M_p( a b e )gz

s—a' s—b's—c

Our aim here is to gain a better understanding of where the num(3®2)/ In 2 in Theorem
[1.7 comes from. To do so, we first apply a change of variables to the ineqiality (1.1). After
definingr, := ==, x5 := %3, w3 := =, (L.1) takes on a form which for clarity we state as a
new theorem (for simplicity of notation, we will denote thgpower mean of the numbers,
Tg, x3 Simply by M, (z)).

Theorem 1.2.For all x; > 1 (i = 1, 2, 3) such that

(1.2) M_y(z) =3,
we have
(1.3) M4 (z—1) <2,

whereq = In(3/2)/In(2).

It is now very easy to check thatis optimal in these results: let > 0 and consider the

special case
2+¢€
T1 =Xy =2 +c¢, T3 = .
€

(1.2) is obviously satisfied, and (by lettiag— 0)
M_,(x—1)<2
can only hold ifp > ¢ = In(3/2)/In(2).

2. MAIN RESULTS

In the light of the formulation of Theorefn 1.2 we see that the new proble@iigen three
numbers with a certain harmonic average, predict the best exponent for a power mean estimate
of these numbers after they have been all reduced (or augmented) by a fixed ahfsiptint
of view leads us to the following generalization (note that Thedrein 1.2 is a special case of this
after settingu = 3, t = 1/3, where the value of matches the requirement that > 1 for
i=1,2,3).

Theorem 2.1.Letx; > 0 (: = 1, 2, 3) be such that

(2.1) M_1(z) = p,
and fixt € (0, min{xy, x9,z3}/1}). Then we have
(2.2) My(x —tp) < (1 —t)u < My, (x—tp) if 2/3<t<1,
(2.3) M_g (x—tp) < (1 =0)p < Mg, (x —tp) if 1/3<¢<2/3,
(2.4) M_p (x—tu) < (I —=t)u < My (z—tu) if 0<t<1/3,
where

In(3/2) In(3/2)

41 = ZENY 42 = L\
() ()
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EXTENSION OF THEERDOS-DEBRUNNERINEQUALITY 3

It is understood thag;, = 0 whent = 2/3, andg, = 0 whent = 1/3.

The proof of Theorem 2|1 will be rather technical, and accordingly we thought it wise not
to pursue further generalizations in this paper, although we are certainly working on it. Similar
statements are possible when estimating the means of more than three numbers, and it should
also be possible to prove extensions to the case when the hypothesis is not just knowledge of
the harmonic mean, but any given mean. Again, we decided not to pursue these more general
directions right now as the technicalities would have easily overshadowed the main purpose of
this note, even in the simplest next case, that is; 4.

If one addg to thex;, instead of subtracting, we have a result whose proof shows non-linear
intricacies even harder than the ones offered by Theprem 2.1:

Theorem 2.2.Letx; > 0 (i = 1, 2, 3) be such that
M_y(z) = p,
and fixt > 0. Then we have
M_j(x+tp) < (T4+t)p < My (z +tp),

where
9t(1 4 t)
5
Whetherg is best possible is open. However, numerical evidence shows that at least fgp some

with p € (1 + \%t, q) and for somer;, M_,(x + tu) < (1 + ¢)u may be false.

The proofs of Theorenis 2.1 ahd 2.2 will be found in Sedtion 4.

qg=1\/1+

3. APPLICATIONS

As an application of Theorem 2.1 we have the following refinement of thercas8é of the
famous Shapiro cyclic inequality. See [1] for a survey of the topic, and [2] for a recent related
result.

Theorem 3.1.Letay, as, a3 > 0, with at most one of the; being zero. Then, with the indéx
cycling throught, 2, 3,

; 1 i
(3.1) M (“—) <z <M, (“—) ,
(i1 + Qig2 2 Qi1+ Qigo
whereq = In(3/2)/1In(2) ~ 0.58496.

Proof. Definingz; := (a1 + as + a3)/(a;41 + ai12) We see that the harmonic mean , (z)
equals3/2. We apply then Theorefn 2.1 (specifically, {2.2)) in the case 3/2, t = 2/3 to
immediately obtain[(3]1). O

For comparison, note that the case= 3 of the original problem posed by Shapira [6] was

stating the simpler inequality
Lo ()
2 i1+ Qigo

Before we embark on the proofs of Theorgmg 2.1[anfd 2.2, we want to show a possible use
of Theoren] 2. in a special situation. It is a trivial fact that, given any positiye,, as, the
arithmetic mean of the sums + as, as + as, az + a1 is simply twice the arithmetic mean of
thea;. But what about other power means of the sums a;,,? The next result shows that the
power means af; +a;, 1 Seem to be related to the classical problem of estimating the difference
between the arithmetic and the harmonic mean ofitl{see [5, 2.14.3] for more on the topic).
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4 VANIA MASCIONI

Theorem 3.2. Let aq, as, az > 0 and, for simplicity, denote their harmonic and arithmetic
means by:_; := M_;(a) andu; := M;(a), respectively. We then have

Mo(a; + aiy1) < 3pn — p—q < My(a; + ait),
where

_ 1 \/(9M1 — 2p-1) (9 — p1)

q _—
H-1 2

Proof. This follows from Theorer 2|2 after first observing that, with= a; + a2 + as,

M, ( a; ) _ H-1 —
o — a; 3y — pq

If we now choose to satisfytu = 1 (i.e.,t = 3-14- —1), Theore yields (sincg- +1 =

Jfai)
o 31 o
M_q S S MO )
o — 3py — pi—q 0 — Q;

and the result follows from simple algebra, the fact that 3.,, and after finding what the
formula forg in Theorenj 2. translates into in the current case. O

Corollary 3.3. Letay, as, az > 0, and define
C := (maxa;)/(min a;).
Then
Ml(a) — M_l(a) S Mg(ai + CLi_H) - 2M1(CL),
where

_ 1 [(9C? 1100 + 9)(9C2 + 14C 1 9)
1= 30 2 '

Proof. This follows from Theorem 3]2 and the following classical result of Specht giving the
upper bound of the ratid/; /M _; in terms ofC (seel[5, 2.14.3, Theorem 1])

Mo (C+ 1)2‘

py —4C

O

Finally, before we get started with the proofs of the main theorems, we present a couple of
simpler observations, given here purely for illustrative purposes. First, let us state the trivial
(though natural) version of Theor¢m 1.2 in the case of two variables.

Theorem 3.4.Forall z; > 1 (i = 1,2) such that

(3.2) M_y(xy,29) =2

we have

(3.3) M,(x1 — 1,29 —1) < 1= My(x; — 1,29 — 1)

forp < 0.

Proof. This follows from the the obvious fact that (B.2) implies— 1 = 1/(x; — 1). O

Also as a curiosity and as an example of the multi-variable statements that are possible (in
the vein of Theorerp 2/1), we have the following
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Theorem 3.5.Letx; > 1 (i =1,...,n) be such that
(3.4) M_y(z) =n.
Then
M (x—1)<n—-1< M(z—1).
Note that the first inequality can be rewritten as

n

1 1 "1 - 1
E<ZE> (in—1> D) ey

=1 1=

Proof. Let f(h) be the function
M,1<£L’1 + h, R 7 + h)
A calculation gives that

f/(h> . (M—l(xl + h7 <oy T + h)>2
N M_Q(l'1+h,...,l’n+h)
and this shows that'(h) > 1 for all h > —1. In particular,
f0) — f(~1) > 1

by the mean value theorem, and this is the first inequality. O

4. PROOFS OF THEOREMS [Z.1AND 2.2

Proof of Theorerp 2] 1Without loss of generality we will prove TheorémP.1 in the case 1.
In the first part of the proof we will verify the first inequalities [n (2.2), (2.3) gnd|(2.4). To do
so, we will apply the method of Lagrange multipliers on the donfdin, =5, z3) € R® | z; >
t, i =1,2,3} to find the minima of
1 1 1
o= Tt (et

f(z1, 29, 23) := (

under the condition
1 1 1
+ —+
ry T2 X3
Clearly, this investigation is only of interest for< p < 1. The Lagrange equations simplify to

zz2/(1+10)

for some constant andi = 1,2,3. The derivative of the function(z) := (x — t)/2?/(+P)
(for x > t) has the same sign & — (1 — p)z and soh(x) has precisely one critical point (a
maximum) atr = 2¢/(1 — p). This means that the only possibility we need to study is when,
say,r; = x, Which can only happen if

2+e€ 2+e¢
(4.2) Iy = T2 = 3 T3 = 3¢

for somee > 0 such that; — ¢ > 0 for : = 1,2, 3 (recall that we are handling the case= 1
here, meaning that_, 1/z; = 3). e must therefore satisfy the inequalities

(4.3) 3t—2<e and (3t—1)e<2.

These conditions will force us to distinguish between three cases because of the different pos-
sible ranges foe:
Casel:2/3<t< 1. Heredt—2<e<2/(3t—1).

=C

(4.2)
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Casell: 1/3 <t < 2/3. Inthis casé) < ¢ < 2/(3t — 1).
Case lll: 0 <t < 1/3. Now e can be any positive number.

With values as in(4]2),
3P 3PeP
(44) f($1,$2,$3) - f(e) = 2(2 Te— 3t)p + (2 + (1 — St)e)pv

and the cases we just described specify the domafite«ffor any givent. The derivative off
with respect ta is

f'(e)=2-3"p (671+p<2 +e—3et) VP — (24 €— 315)*1*”)

and so its critical points must satisfy the equation

(4.5) gi(e) =2+e—3t=(2+¢€— E}et)e}%rzj =: go(€).

e = 1 is always a critical point of (¢). After inspectingf”(1) we also see that= 1 can only
be a minimum ifp > 1 — 2¢, which we will assume from now on. In Cases | andelt 1/3),
g2(€) is always concave on its domain, and [so](4.5) can have at most two solutionggi)ce
is linear. And since one of these critical points is the local minimumn-atl, the other one (if
any) cannot be a local minimum, too. In Case llI{ik ¢t < 1/3), g2(¢) is increasing for all
e > 0 and, since

g5 (€) = 2¢ WP (14 p)~2(1 — p) (1 — 3t)e — 2p),

we see thap,(e€) is concave ife < 2p/(1 — 3t) and convex ife > 2p/(1 — 3t). Sinceg;(0) =
2 — 3t > 0 = ¢2(0), we conclude thaf (4.5) has at most three solutions and thug thatas at
most three critical points. It actually happens that there are exactly three critical points in Case
[l In fact, the inequality
2
%O):TI;@—3ﬁﬁﬂ<l

is equivalent tgy > 1 — 2¢, and so it holds by our assumption. Because of thig,) must cross
g1(€) ate = 1 with a slope smaller thah, and thusc = 1 is the middle of the three critical
points of f(¢). We therefore know that= 1 is the only local minimum off in all cases.

Summarizing, we have shown that in all possible cases the mininfigedwill result from
comparingf (1) with the values (or limits) of (¢) at the endpoints of the allowable intervals for
e. We proceed now to do so, while still distinguishing between the same three cases for separate
ranges fot.

Case I: 2/3 <t < 1. Here3t —2 < ¢ < 2/(3t — 1), and the values of close to the
endpoints are seen to tend to infinity. Consequerftly,) yields the absolute minimum of.
We conclude that for these valuestofe will haveM_,(x —t) <1 —tforallp € (0,1) and,
passing to the limip — 0, the same applies to the geometric average

Mo(z —t) = (21 — t)(zg — t)(z5 — 1))/* <1 —t.

That no higher power mean (that is, of the typg(z) with » > 0) would work follows from
the fact that for our choice of;, =5, 23 the expression’ + z% + z3 grows out of bounds for
small enouglz.

Case ll: 1/3 <t < 2/3. Inthis casdé) < ¢ < 2/(3t — 1). Values ofe tending to the right
endpoint will causef to grow arbitrarily, whilelim._ f(¢) = 2 -3?/(2 — 3t)?. The latter is
never smaller thaB/(1 — ¢)? if and only if

In(3/2)

Pz 3y
In (5=5)

(4.6)
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We must now measure this condition feagainst the one we had obtained at the beginning,
p > 1 — 2t. We claim that[(4.6) is stronger, that is,

In(3/2)
In (3 3t)

2—-3t

s(t) :==1In (g — gi) (1—21),

R —— —21n(1+;)

4.7) >1—92t

when0 < ¢ < 2/3. With

we have

1—t 2-3t 2 -3t
Since for allx > 0 the classical inequalitin(1 + 1/x) > 2/(2z + 1) holds (se€e[5, 3.6.18]), a
little algebra shows that

() < — i <0
(1 —1¢)(2—3t)(5 — 6t) '
Therefores(t) is decreasing on e (0,2/3) and is thus always less thaf0) = In(3/2) there,
proving (4.T). [(4.]) being true, to complete the discussion of Case Il we may now state that

M_,(x —t) <1-—t,where

In(3/2)

=55
In (5=57)

and this choice of is optimal.

Case lll: 0 < ¢t < 1/3. In this case can be any positive number, and the limitsf@¢) for
e — 0 ande — oo are given by2 - 37 /(2 — 3t)? and3?/(1 — 3t¢)?. By our discussion of the
critical points of f(¢) the absolute minimum of (¢) is either one of these two values, ff1).
For3?/(1 — 3t)? to always be greater or equali3g(1 — ¢)? we need to have

S In3
P = e
In (3=5)
This condition is actually weaker thgn (4.6), that is, we always have
In(3/2) In3
(4.8) In (221) ~ 7 (32
n 2—-3t n 1-3t
when0 < ¢t < 1/3. A way to convince ourselves of this is to consider the function
In (3 3t)
(4.9) h(t) == 1%
n(5557)
Notice that its derivative fot € (0,1/3) has the same sign as
1 2
4.10 2 DIn{l4+——)—aln{1+4+—
(410 @i (14 ) —am (142),
where for convenience we wrote:= 1 — 3¢ (and thus: € (0, 1)). The latter function ot has
the derivative
a’+2a
In({——],
(a+1)2

which is always negative far € (0, 1). This implies that the expression [n (4.10) is decreasing
on (0,1) and hence it is always greater than its value at 1, which is41n(3/2) — In3 =
In(27/16) > 0. This means that the function efin (4.10) is always positive fo# € (0,1),
and in turn this implies thak(¢) as defined in[(4]9) is increasing fore (0,1/3). Finally,
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sinceh(0) = In(3)/In(3/2) > 0, h(t) is always greater thah(0), and the inequality| (4]8) is
established. To wrap up the first part of the proof, we can now state that the first inequalities in

@22), [2:3) and(2]4) are proved.
Let us now check the second inequalities[in (2.2),](2.3) (2.4), still assuming, for sim-

plicity, that M/_,(z) = 1. To see for whictp > 0 we haveM,(z —t) > 1 — ¢, we need to
minimize
g(x1, x0.23) = (1 — )P + (29 — )P + (23 — )P,
and thus the Lagrange equations are now
vz — )Pt =c

for some constantand: = 1, 2, 3. Certainly, sincel/;(x — 1) > 1 —t is trivial, we can restrict
our attention tg € (0, 1). Since the function?(z — 1)?~! decreases far < 2¢/(1 + p) and
increases for: > 2t/(1 + p), we are in a situation similar to the first part of the proof, with
only the need to consider the same special situation (4.2). In thigyasa,function ot

becomes
2+ (1- 3t)e)p) |

b

gle) =377 (2(2 +e—3t)P +

Similarly to the way we handled in the first part of the proof, we see now that the critical
points ofg(e) must satisfy the equation

24¢e¢—3t B
2+ €—3et

If 0 < ¢t < 1/3, the left hand side is concave, the right hand side is convex, and so (because
of their initial values at = 0) ¢ = 1 must be the only critical point of(¢). Sinceg(e) is
unbounded fok close to0 or when tending tao, we conclude that = 1 yields the absolute
minimum of g(¢) in this case, and thud/,(z — t) > = — t. Lettingp — 0 shows that if
0 <t <1/3wehaver —t < My(x —t), as claimed in[(2]4) (the statement tor 1/3 follows
by continuity).

Whent € (1/3,2/3) we rewrite [4.1]L) in the form

1+p
1—

(4.11)

€

bS]

(4.12) 2+€—3t:6£(2—|—6—36t) =: gs(€).

gs(€) is increasing for < 2/(3t — 1) and decreasing for > 2/(3t — 1). From its second
derivative we also see that it is convex fox (1 + p)/(3t — 1), and concave foe > (1 +
p)/(3t — 1). Fort € (1/3,2/3) we havel < (1 + p)/(3t — 1). Hence,g3(¢) meets the left
hand side of{(4.12) at = 1 for the first time, and thus there is exactly one other critical point
of g(e) (at the right ofe = 1), and there we must have a local minimum. For smal(e)

is arbitrarily large and thus, as we are looking for a minimum, we only need to consider the
possibility offered by the right endpoint of the admissible interval (see Case Il above), i.e.,

2 2 \”
= ) =237 (2-3t+-———) .
g<3t—1) ( +3t—1)

In order to havel/,(x —t) > 1 —t we must have that this value be greater or equa(ic-¢)?,
which leads to the condition
In(3/2
(4.13) pz MO
n (55)

as stated i (2]3). Finally, we consider the case < t < 1, where (as in Case | in the first half
of the proof)3t — 2 < ¢ < 2/(3t — 1). First we observe that since the valy@t — 2) at the left
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EXTENSION OF THEERDOS-DEBRUNNERINEQUALITY 9

endpoint must be at lea3tl — ¢) in order to havel/,(z — t) > 1 — ¢, we must have

g(3t —2) = (3;—:?)19 > 3(1 —t)?,

that is,
In3
(4.14) P> —.
In (5%3)
In complete analogy with (41.8), fare (2/3, 1) we have the inequality
In(3/2) - In3
In(5%5) = In(5%)

meaning that the condition i (4]13) trumps the on¢ in (4.14) (we leave the details to the reader).
Since convexity and concavity @f(¢) (as in [4.12)) are the same as in the previous case, we
still have thatg(e¢) admits at most two critical points inside the admissible intervakfoBy
inspecting the second derivative g(fc) ate = 1, we see that its sign is the same as the sign of

14 p — 2t. We will therefore have a minimum at= 1 if and only if p > 2¢ — 1, and this latter
condition will certainly hold if

In(3/2)

3t—1

> 2t — 1.

Once again, in complete analogy wifh (4.7) (and again using the inequality [5, 3.6.18] to sim-
plify the estimate) we can prove that the function

(2t = 1)In (3t3f 1>

is strictly increasing in the intervé®/3, 1), and thus[(4.15) readily follows. To conclude, since
e = 1 is the only minimum ofg(¢) in the interval(3t — 2,2/(3t — 1), and since we already
discussed the conditior|s (4]13) ahd (4.14) resulting from the valugs)adit the endpoints, our
work is done and Theorem 2.1 is now proved. O

Proof of Theorerm 2]2Assume that;, xs, 23 > 0 are given such that/_,(x) = 1, and fix
t > 0. The search fop that satisfyM_,(xz + t) < 1 + ¢ starts out as in the proof of Theorem
[2.7. Assume that > 1, since this is the only range that could yield possible non-trivial values
of p. We need to find the minima of

1 1 1

+ +
T+ t)p (.%'2 + t)p (.733 + t)p

f(.il:l, T2, 373) = (

under the condition
1 1 1
+—+
T i) T3
and over the domaifi(z, zo, v3) € R3 | z; > 0, i = 1,2, 3}. The Lagrange equations simplify
to
i+t
(4.16) it

2

for some constantand: = 1,2, 3, so here, too, we only need to focus on the case when, say,
1 = T, Which can only happen if

=C

2 2
(4.17) p=dy= o ga=2TE
3 3e
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wheree > 0 is arbitrary. With these valueg,= f(¢) takes on the form

3 3PP
(4.18) floranas) = 1O =25 Y Gy i sner

e is a critical point off (¢) if and only if it satisfies the equation

(4.19) hi(e) i= (2+ €+ 3t)ertt = 2+ (1+ 3t)e = hale).

Also, f"(e) > 0 if and only if

(4.20) (p+1)(2+e+3t) 2P >2 2P (24 e+ 3et) 2 P(1 +€—p+ 3et).

e = 1 is always a critical point, and is a minimum (as it must bey/f,,(z +t) < x + t) is
to hold) exactly if /(1) > 0, that is, ifp > 1 + 2¢t. From now on, then, we will assume that
p>1+42t.

Define

9t(1+1t)

2 Y
and note that for alt > 0 we havel + 2t < ¢ < 1 + 3¢. If we substitute the identity (4.19) in
(4.20) we obtain the condition

(4.21) ple) == (p—1)(3t + 1) —4(¢* —p)e +2(p — 1)(2 + 3t) > 0.
p(e) is quadratic ire, and has discriminank equal to

A= T72t(1 + t)(¢* — p°).
If p > g thenA < 0, and this means (since thefk) > 0 always) that every critical point of
f(e) is alocal minimum: therefore, = 1 must be the only local minimum if0, co). What is
now left to do (in the casg > ¢) is to examine the values ¢f¢) for e — 0 ande — oo. At both
ends of the domairfi(¢) must still be greater or equal 8y (1 + ¢)? for the desired inequality to
hold. These two conditions yield, respectively, the inequalities

In(3/2) _ In(3)

P> = 3y PP i=
In (357) In (45)

Not to overburden the reader, let us just state that an analysis similar to the one we carried out
when proving|[(4.8) will be just as effective in showing that, forta# 0,

q:=1/1+

< q <142t

Now, since we already saw that+ 2t < ¢, we conclude that whep > ¢ the inequality
M_,(x +t) <z + t will be true. The first inequality in Theorejm 2.2 is thus proved.

As an aside, the caser2t < p < ¢ seems much harder to handle. Numerical evidence points
in the direction that for any such choiceyathere are counterexamples wheéte,(x+t) < z+t
fails, but we could not prove it. We could understand why this might happen by noticing that
if p < ¢ then f(e) definitely has a chance to have a second local minimum at some location
€0 > 1. To see this, we first observe th&t) cannot have more than three critical points: this is
because (cf[(4.19)0), (¢) is increasing for alt > 0, concave foe < (2 + 3t)/p and convex for
e > (2 + 3t)/p. Sincehy(e) is linear, no more than three solutions [of (4.19) are possible. So,
if 14 2t < p < ¢ then the discriminant gf(¢) is positive, and thug(e) has two distinct real
roots. Since

(1) =91 +8)(p—(1+28) >0, p(1)=6(1+1) (p—(1+3t) <0,

both roots are greater than Thus, in this case, if (¢) should have one more local minimum,
then it would have to be greater thanand, in fact, greater than the larger of the two roots of
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p(€), since no two local minima can be consecutive critical points. The situation is technically
murky here, however, and we will not pursue the question further.

Proving the second inequality in Theorém|2.2 is, in comparison, a breeze. First notice that
M, (x+t) > =+t will not possibly hold in general for any negatiyeOn the other hand, if we
focus on the geometric mean of the numbers- ¢, the Lagrange method (under the condition
M_(x) = 1) will very easily yield the only solution; = x» = x3, and hence a quick path to
the second inequality in Theorém2.2. We leave the details to the reader. O

REFERENCES

[1] P.J. BUSHELL, Shapiro’s cyclic surBull. London Math. Soc26 (1994), 564-574.

[2] P.J. BUSHELLAND J.B. McLEOD, Shapiro’s cyclic inequality for evem J. Inequal. Appl.,7
(2002), 331-348.

[3] W. JANOUS, A short note on the Erdds-Debrunner inequdiitgmente der Mathematig1 (2006),
32-35.

[4] V. MASCIONI, On the Erdos-Debrunner inequality, of Inequal. in Pure and Appl. Math8(2)
(2007), Art. 32. [ONLINE!http://jipam.vu.edu.au/article.php?sid=846 ].

[5] D.S.MITRINOVIC, Analytic InequalitiesSpringer-Verlag 1970.
[6] H.S. SHAPIRO, Problem 4603 mer. Math. Monthly61 (1954), 571.

J. Inequal. Pure and Appl. Math9(3) (2008), Art. 67, 11 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/article.php?sid=846
http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	3. Applications
	4. Proofs of Theorems 2.1 and 2.2 
	References

