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ABSTRACT. Given the harmonic meanµ of the numbersxi (i = 1, 2, 3) and at ∈ (0,min{x1, x2, x3}/µ}),
we determine the best power mean exponentsp andq such thatMp(xi − tµ) ≤ (1 − t)µ ≤
Mq(xi − tµ), wherep andq only depend ont. Also, for t > 0 we similarly handle the estimates
Mp(xi + tµ) ≤ (1 + t)µ ≤ Mq(xi + tµ).
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1. I NTRODUCTION

Three pointsD, E, F , one on each of the sides of a triangleABC, form a triangleDEF that
partitions the original one into four sub-triangles. The Erdös-Debrunner inequality says that

min{A1, A2, A3} ≤ A4,

whereA1, A2, A3 are the areas of the corner triangles, andA4 is the area of the central triangle.
In [3], Janous conjectured that the optimal improvement would be given by

M−q(A1, A2, A3) ≤ A4

whereM−q denotes the(−q)-power mean with

q =
ln(3/2)

ln 2

(Janous proved the above inequality withq = 1. See the classical reference [5] for more on
power means). In our paper [4] we confirmed Janous’ conjecture. In the course of our proof we
revealed some equivalent formulations of this optimal result, one of which is:
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2 VANIA MASCIONI

Theorem 1.1([4, Cor. 6]). Let p ≥ ln(3/2)/ ln(2). Then for all triangles with sidesa, b andc
and semi-perimeters, the inequality(

s− a

a

)p

+

(
s− b

b

)p

+

(
s− c

c

)p

≥ 3

2p

is valid. In terms of power means,

(1.1) M−p

(
a

s− a
,

b

s− b
,

c

s− c

)
≤ 2.

Our aim here is to gain a better understanding of where the numberln(3/2)/ ln 2 in Theorem
1.1 comes from. To do so, we first apply a change of variables to the inequality (1.1). After
definingx1 := s

s−a
, x2 := s

s−b
, x3 := s

s−c
, (1.1) takes on a form which for clarity we state as a

new theorem (for simplicity of notation, we will denote thep-power mean of the numbersx1,
x2, x3 simply byMp(x)).

Theorem 1.2.For all xi > 1 (i = 1, 2, 3) such that

(1.2) M−1(x) = 3,

we have

(1.3) M−q (x− 1) ≤ 2,

whereq = ln(3/2)/ ln(2).

It is now very easy to check thatq is optimal in these results: letε > 0 and consider the
special case

x1 = x2 = 2 + ε, x3 =
2 + ε

ε
.

(1.2) is obviously satisfied, and (by lettingε → 0)

M−p (x− 1) ≤ 2

can only hold ifp ≥ q = ln(3/2)/ ln(2).

2. M AIN RESULTS

In the light of the formulation of Theorem 1.2 we see that the new problem is:Given three
numbers with a certain harmonic average, predict the best exponent for a power mean estimate
of these numbers after they have been all reduced (or augmented) by a fixed amount.This point
of view leads us to the following generalization (note that Theorem 1.2 is a special case of this
after settingµ = 3, t = 1/3, where the value oft matches the requirement thatxi > 1 for
i = 1, 2, 3).

Theorem 2.1.Letxi > 0 (i = 1, 2, 3) be such that

(2.1) M−1(x) = µ,

and fixt ∈ (0, min{x1, x2, x3}/µ}). Then we have

M0(x− tµ) ≤ (1− t)µ ≤ Mq2(x− tµ) if 2/3 ≤ t < 1,(2.2)

M−q1 (x− tµ) ≤ (1− t)µ ≤ Mq2 (x− tµ) if 1/3 ≤ t < 2/3,(2.3)

M−q1 (x− tµ) ≤ (1− t)µ ≤ M0 (x− tµ) if 0 < t < 1/3,(2.4)

where

q1 =
ln(3/2)

ln
(

1−t
2
3
−t

) , q2 =
ln(3/2)

ln
(

t
t− 1

3

) .
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EXTENSION OF THEERDÖS-DEBRUNNER INEQUALITY 3

It is understood thatq1 = 0 whent = 2/3, andq2 = 0 whent = 1/3.

The proof of Theorem 2.1 will be rather technical, and accordingly we thought it wise not
to pursue further generalizations in this paper, although we are certainly working on it. Similar
statements are possible when estimating the means of more than three numbers, and it should
also be possible to prove extensions to the case when the hypothesis is not just knowledge of
the harmonic mean, but any given mean. Again, we decided not to pursue these more general
directions right now as the technicalities would have easily overshadowed the main purpose of
this note, even in the simplest next case, that is,n = 4.

If one addstµ to thexi, instead of subtracting, we have a result whose proof shows non-linear
intricacies even harder than the ones offered by Theorem 2.1:

Theorem 2.2.Letxi > 0 (i = 1, 2, 3) be such that

M−1(x) = µ,

and fixt > 0. Then we have

M−q (x + tµ) ≤ (1 + t)µ ≤ M0 (x + tµ) ,

where

q =

√
1 +

9t(1 + t)

2
.

Whetherq is best possible is open. However, numerical evidence shows that at least for somep

with p ∈
(
1 + 3√

2
t, q
)

and for somexi, M−p(x + tµ) ≤ (1 + t)µ may be false.

The proofs of Theorems 2.1 and 2.2 will be found in Section 4.

3. APPLICATIONS

As an application of Theorem 2.1 we have the following refinement of the casen = 3 of the
famous Shapiro cyclic inequality. See [1] for a survey of the topic, and [2] for a recent related
result.

Theorem 3.1. Let a1, a2, a3 ≥ 0, with at most one of theai being zero. Then, with the indexi
cycling through1, 2, 3,

(3.1) M0

(
ai

ai+1 + ai+2

)
≤ 1

2
≤ Mq

(
ai

ai+1 + ai+2

)
,

whereq = ln(3/2)/ ln(2) ∼ 0.58496.

Proof. Definingxi := (a1 + a2 + a3)/(ai+1 + ai+2) we see that the harmonic meanM−1(x)
equals3/2. We apply then Theorem 2.1 (specifically, (2.2)) in the caseµ = 3/2, t = 2/3 to
immediately obtain (3.1). �

For comparison, note that the casen = 3 of the original problem posed by Shapiro [6] was
stating the simpler inequality

1

2
≤ M1

(
ai

ai+1 + ai+2

)
.

Before we embark on the proofs of Theorems 2.1 and 2.2, we want to show a possible use
of Theorem 2.2 in a special situation. It is a trivial fact that, given any positivea1, a2, a3, the
arithmetic mean of the sumsa1 + a2, a2 + a3, a3 + a1 is simply twice the arithmetic mean of
theai. But what about other power means of the sumsai + ai+1? The next result shows that the
power means ofai+ai+1 seem to be related to the classical problem of estimating the difference
between the arithmetic and the harmonic mean of theai (see [5, 2.14.3] for more on the topic).
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4 VANIA MASCIONI

Theorem 3.2. Let a1, a2, a3 > 0 and, for simplicity, denote their harmonic and arithmetic
means byµ−1 := M−1(a) andµ1 := M1(a), respectively. We then have

M0(ai + ai+1) ≤ 3µ1 − µ−1 ≤ Mq(ai + ai+1),

where

q =
1

µ−1

√
(9µ1 − 2µ−1)(9µ1 − µ−1)

2
.

Proof. This follows from Theorem 2.2 after first observing that, withσ := a1 + a2 + a3,

M−1

(
ai

σ − ai

)
=

µ−1

3µ1 − µ−1

=: µ.

If we now chooset to satisfytµ = 1 (i.e.,t = 3 µ1

µ−1
− 1), Theorem 2.2 yields (sinceai

σ−a1
+ 1 =

σ
σ−ai

)

M−q

(
σ

σ − ai

)
≤ 3µ1

3µ1 − µ−1

≤ M0

(
σ

σ − ai

)
,

and the result follows from simple algebra, the fact thatσ = 3µ1, and after finding what the
formula forq in Theorem 2.2 translates into in the current case. �

Corollary 3.3. Leta1, a2, a3 > 0, and define

C := (max
i

ai)/(min
i

ai).

Then
M1(a)−M−1(a) ≤ Mq(ai + ai+1)− 2M1(a),

where

q =
1

4C

√
(9C2 + 10C + 9)(9C2 + 14C + 9)

2
.

Proof. This follows from Theorem 3.2 and the following classical result of Specht giving the
upper bound of the ratioM1/M−1 in terms ofC (see [5, 2.14.3, Theorem 1])

µ1

µ−1

≤ (C + 1)2

4C
.

�

Finally, before we get started with the proofs of the main theorems, we present a couple of
simpler observations, given here purely for illustrative purposes. First, let us state the trivial
(though natural) version of Theorem 1.2 in the case of two variables.

Theorem 3.4.For all xi > 1 ( i = 1, 2) such that

(3.2) M−1(x1, x2) = 2

we have

(3.3) Mp (x1 − 1, x2 − 1) ≤ 1 = M0 (x1 − 1, x2 − 1)

for p < 0.

Proof. This follows from the the obvious fact that (3.2) impliesx2 − 1 = 1/(x1 − 1). �

Also as a curiosity and as an example of the multi-variable statements that are possible (in
the vein of Theorem 2.1), we have the following
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EXTENSION OF THEERDÖS-DEBRUNNER INEQUALITY 5

Theorem 3.5.Letxi > 1 ( i = 1, . . . , n) be such that

(3.4) M−1(x) = n.

Then
M−1(x− 1) ≤ n− 1 ≤ M1(x− 1).

Note that the first inequality can be rewritten as

1

n

(
n∑

i=1

1

xi

)(
n∑

i=1

1

xi − 1

)
≤

n∑
i=1

1

(xi − 1)xi

.

Proof. Let f(h) be the function

M−1(x1 + h, . . . , xn + h).

A calculation gives that

f ′(h) =

(
M−1(x1 + h, . . . , xn + h)

M−2(x1 + h, . . . , xn + h)

)2

and this shows thatf ′(h) ≥ 1 for all h ≥ −1. In particular,

f(0)− f(−1) ≥ 1

by the mean value theorem, and this is the first inequality. �

4. PROOFS OF THEOREMS 2.1 AND 2.2

Proof of Theorem 2.1.Without loss of generality we will prove Theorem 2.1 in the caseµ = 1.
In the first part of the proof we will verify the first inequalities in (2.2), (2.3) and (2.4). To do
so, we will apply the method of Lagrange multipliers on the domain{(x1, x2, x3) ∈ R3 | xi >
t, i = 1, 2, 3} to find the minima of

f(x1, x2, x3) :=
1

(x1 − t)p
+

1

(x2 − t)p
+

1

(x3 − t)p

under the condition
1

x1

+
1

x2

+
1

x3

= 3.

Clearly, this investigation is only of interest for0 < p < 1. The Lagrange equations simplify to

(4.1)
xi − t

x
2/(1+p)
i

= c

for some constantc andi = 1, 2, 3. The derivative of the functionh(x) := (x − t)/x2/(1+p)

(for x > t) has the same sign as2t − (1 − p)x and soh(x) has precisely one critical point (a
maximum) atx = 2t/(1 − p). This means that the only possibility we need to study is when,
say,x1 = x2, which can only happen if

(4.2) x1 = x2 =
2 + ε

3
, x3 =

2 + ε

3ε
,

for someε > 0 such thatxi − t > 0 for i = 1, 2, 3 (recall that we are handling the caseµ = 1
here, meaning that

∑
i 1/xi = 3). ε must therefore satisfy the inequalities

(4.3) 3t− 2 < ε and (3t− 1)ε < 2.

These conditions will force us to distinguish between three cases because of the different pos-
sible ranges forε:

Case I: 2/3 ≤ t < 1. Here3t− 2 < ε < 2/(3t− 1).
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6 VANIA MASCIONI

Case II: 1/3 < t < 2/3. In this case0 < ε < 2/(3t− 1).
Case III: 0 < t ≤ 1/3. Now ε can be any positive number.

With values as in (4.2),

(4.4) f(x1, x2, x3) = f(ε) = 2
3p

(2 + ε− 3t)p
+

3pεp

(2 + (1− 3t)ε)p ,

and the cases we just described specify the domain off(ε) for any givent. The derivative off
with respect toε is

f ′ (ε) = 2 · 3pp
(
ε−1+p(2 + ε− 3εt)−1−p − (2 + ε− 3t)−1−p

)
and so its critical points must satisfy the equation

(4.5) g1(ε) := 2 + ε− 3t = (2 + ε− 3εt)ε
1−p
1+p =: g2(ε).

ε = 1 is always a critical point off(ε). After inspectingf ′′(1) we also see thatε = 1 can only
be a minimum ifp > 1− 2t, which we will assume from now on. In Cases I and II (ε > 1/3),
g2(ε) is always concave on its domain, and so (4.5) can have at most two solutions sinceg1(ε)
is linear. And since one of these critical points is the local minimum atε = 1, the other one (if
any) cannot be a local minimum, too. In Case III (if0 < t < 1/3), g2(ε) is increasing for all
ε > 0 and, since

g′′2 (ε) = 2ε−3+2/(1+p)(1 + p)−2(1− p)
(
(1− 3t)ε− 2p

)
,

we see thatg2(ε) is concave ifε < 2p/(1 − 3t) and convex ifε > 2p/(1 − 3t). Sinceg1(0) =
2− 3t > 0 = g2(0), we conclude that (4.5) has at most three solutions and thus thatf(ε) has at
most three critical points. It actually happens that there are exactly three critical points in Case
III. In fact, the inequality

g′2(1) =
2

1 + p

(
2− 3t− p

)
< 1

is equivalent top > 1− 2t, and so it holds by our assumption. Because of this,g2(ε) must cross
g1(ε) at ε = 1 with a slope smaller than1, and thusε = 1 is the middle of the three critical
points off(ε). We therefore know thatε = 1 is the only local minimum off in all cases.

Summarizing, we have shown that in all possible cases the minima off(ε) will result from
comparingf(1) with the values (or limits) off(ε) at the endpoints of the allowable intervals for
ε. We proceed now to do so, while still distinguishing between the same three cases for separate
ranges fort.

Case I: 2/3 ≤ t < 1. Here3t − 2 < ε < 2/(3t − 1), and the values off close to the
endpoints are seen to tend to infinity. Consequently,f(1) yields the absolute minimum off .
We conclude that for these values oft we will haveM−p(x− t) ≤ 1− t for all p ∈ (0, 1) and,
passing to the limitp → 0, the same applies to the geometric average

M0(x− t) = ((x1 − t)(x2 − t)(x3 − t))1/3 ≤ 1− t.

That no higher power mean (that is, of the typeMr(x) with r > 0) would work follows from
the fact that for our choice ofx1, x2, x3 the expressionxr

1 + xr
2 + x3

3 grows out of bounds for
small enoughε.

Case II: 1/3 < t < 2/3. In this case0 < ε < 2/(3t − 1). Values ofε tending to the right
endpoint will causef to grow arbitrarily, whilelimε→0 f(ε) = 2 · 3p/(2 − 3t)p. The latter is
never smaller than3/(1− t)p if and only if

(4.6) p ≥ ln(3/2)

ln
(

3−3t
2−3t

) .
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EXTENSION OF THEERDÖS-DEBRUNNER INEQUALITY 7

We must now measure this condition forp against the one we had obtained at the beginning,
p > 1− 2t. We claim that (4.6) is stronger, that is,

(4.7)
ln(3/2)

ln
(

3−3t
2−3t

) > 1− 2t

when0 < t < 2/3. With

s(t) := ln

(
3− 3t

2− 3t

)
(1− 2t),

we have

s′(t) =
1

1− t
− 1

2− 3t
− 2 ln

(
1 +

1

2− 3t

)
.

Since for allx > 0 the classical inequalityln(1 + 1/x) > 2/(2x + 1) holds (see [5, 3.6.18]), a
little algebra shows that

s′(t) < − 3− 4t

(1− t)(2− 3t)(5− 6t)
< 0.

Therefore,s(t) is decreasing ont ∈ (0, 2/3) and is thus always less thans(0) = ln(3/2) there,
proving (4.7). (4.7) being true, to complete the discussion of Case II we may now state that
M−q(x− t) ≤ 1− t, where

q :=
ln(3/2)

ln
(

2−3t
3−3t

) ,
and this choice ofq is optimal.

Case III: 0 < t ≤ 1/3. In this caseε can be any positive number, and the limits off(ε) for
ε → 0 andε → ∞ are given by2 · 3p/(2 − 3t)p and3p/(1 − 3t)p. By our discussion of the
critical points off(ε) the absolute minimum off(ε) is either one of these two values, orf(1).
For3p/(1− 3t)p to always be greater or equal to3/(1− t)p we need to have

p ≥ ln 3

ln
(

3−3t
1−3t

) .
This condition is actually weaker than (4.6), that is, we always have

(4.8)
ln(3/2)

ln
(

3−3t
2−3t

) >
ln 3

ln
(

3−3t
1−3t

)
when0 < t < 1/3. A way to convince ourselves of this is to consider the function

(4.9) h(t) :=
ln
(

3−3t
1−3t

)
ln
(

3−3t
2−3t

) .
Notice that its derivative fort ∈ (0, 1/3) has the same sign as

(4.10) 2(a + 1) ln

(
1 +

1

a + 1

)
− a ln

(
1 +

2

a

)
,

where for convenience we wrotea := 1− 3t (and thusa ∈ (0, 1)). The latter function ofa has
the derivative

ln

(
a2 + 2a

(a + 1)2

)
,

which is always negative fora ∈ (0, 1). This implies that the expression in (4.10) is decreasing
on (0, 1) and hence it is always greater than its value ata = 1, which is4 ln(3/2) − ln 3 =
ln(27/16) > 0. This means that the function ofa in (4.10) is always positive fora ∈ (0, 1),
and in turn this implies thath(t) as defined in (4.9) is increasing fort ∈ (0, 1/3). Finally,
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8 VANIA MASCIONI

sinceh(0) = ln(3)/ ln(3/2) > 0, h(t) is always greater thanh(0), and the inequality (4.8) is
established. To wrap up the first part of the proof, we can now state that the first inequalities in
(2.2), (2.3) and (2.4) are proved.

Let us now check the second inequalities in (2.2), (2.3) and (2.4), still assuming, for sim-
plicity, that M−1(x) = 1. To see for whichp > 0 we haveMp(x − t) ≥ 1 − t, we need to
minimize

g(x1, x2.x3) = (x1 − t)p + (x2 − t)p + (x3 − t)p,

and thus the Lagrange equations are now

x2
i (xi − t)p−1 = c

for some constantc andi = 1, 2, 3. Certainly, sinceM1(x− 1) ≥ 1− t is trivial, we can restrict
our attention top ∈ (0, 1). Since the functionx2(x − 1)p−1 decreases forx < 2t/(1 + p) and
increases forx > 2t/(1 + p), we are in a situation similar to the first part of the proof, with
only the need to consider the same special situation as in (4.2). In this case,g as a function ofε
becomes

g(ε) = 3−p

(
2(2 + ε− 3t)p +

(2 + (1− 3t)ε)p

εp

)
.

Similarly to the way we handledf in the first part of the proof, we see now that the critical
points ofg(ε) must satisfy the equation

(4.11)
2 + ε− 3t

2 + ε− 3εt
= ε

1+p
1−p .

If 0 < t < 1/3, the left hand side is concave, the right hand side is convex, and so (because
of their initial values atε = 0) ε = 1 must be the only critical point ofg(ε). Sinceg(ε) is
unbounded forε close to0 or when tending to∞, we conclude thatε = 1 yields the absolute
minimum of g(ε) in this case, and thusMp(x − t) ≥ x − t. Letting p → 0 shows that if
0 < t ≤ 1/3 we havex− t ≤ M0(x− t), as claimed in (2.4) (the statement fort = 1/3 follows
by continuity).

Whent ∈ (1/3, 2/3) we rewrite (4.11) in the form

(4.12) 2 + ε− 3t = ε
1+p
1−p (2 + ε− 3εt) =: g3(ε).

g3(ε) is increasing forε < 2/(3t − 1) and decreasing forε > 2/(3t − 1). From its second
derivative we also see that it is convex forε < (1 + p)/(3t − 1), and concave forε > (1 +
p)/(3t − 1). For t ∈ (1/3, 2/3) we have1 < (1 + p)/(3t − 1). Hence,g3(ε) meets the left
hand side of (4.12) atε = 1 for the first time, and thus there is exactly one other critical point
of g(ε) (at the right ofε = 1), and there we must have a local minimum. For smallε, g(ε)
is arbitrarily large and thus, as we are looking for a minimum, we only need to consider the
possibility offered by the right endpoint of the admissible interval (see Case II above), i.e.,

g

(
2

3t− 1

)
= 2 · 3−p

(
2− 3t +

2

3t− 1

)p

.

In order to haveMp(x− t) ≥ 1− t we must have that this value be greater or equal to3(1− t)p,
which leads to the condition

(4.13) p ≥ ln(3/2)

ln
(

3t
3t−1

) ,
as stated in (2.3). Finally, we consider the case2/3 < t < 1, where (as in Case I in the first half
of the proof)3t− 2 < ε < 2/(3t− 1). First we observe that since the valueg(3t− 2) at the left
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EXTENSION OF THEERDÖS-DEBRUNNER INEQUALITY 9

endpoint must be at least3(1− t)p in order to haveMp(x− t) ≥ 1− t, we must have

g(3t− 2) =

(
3(1− t)t

3t− 2

)p

≥ 3(1− t)p,

that is,

(4.14) p ≥ ln 3

ln
(

3t
3t−2

) .
In complete analogy with (4.8), fort ∈ (2/3, 1) we have the inequality

ln(3/2)

ln
(

3t
3t−1

) >
ln 3

ln
(

3t
3t−2

) ,
meaning that the condition in (4.13) trumps the one in (4.14) (we leave the details to the reader).
Since convexity and concavity ofg3(ε) (as in (4.12)) are the same as in the previous case, we
still have thatg(ε) admits at most two critical points inside the admissible interval forε. By
inspecting the second derivative ofg(ε) at ε = 1, we see that its sign is the same as the sign of
1 + p− 2t. We will therefore have a minimum atε = 1 if and only if p > 2t− 1, and this latter
condition will certainly hold if

(4.15) p ≥ ln(3/2)

ln
(

3t
3t−1

) > 2t− 1.

Once again, in complete analogy with (4.7) (and again using the inequality [5, 3.6.18] to sim-
plify the estimate) we can prove that the function

(2t− 1) ln

(
3t

3t− 1

)
is strictly increasing in the interval(2/3, 1), and thus (4.15) readily follows. To conclude, since
ε = 1 is the only minimum ofg(ε) in the interval(3t − 2, 2/(3t − 1), and since we already
discussed the conditions (4.13) and (4.14) resulting from the values ofg(ε) at the endpoints, our
work is done and Theorem 2.1 is now proved. �

Proof of Theorem 2.2.Assume thatx1, x2, x3 > 0 are given such thatM−1(x) = 1, and fix
t > 0. The search forp that satisfyM−p(x + t) ≤ 1 + t starts out as in the proof of Theorem
2.1. Assume thatp > 1, since this is the only range that could yield possible non-trivial values
of p. We need to find the minima of

f(x1, x2, x3) :=
1

(x1 + t)p
+

1

(x2 + t)p
+

1

(x3 + t)p

under the condition
1

x1

+
1

x2

+
1

x3

= 3

and over the domain{(x1, x2, x3) ∈ R3 | xi > 0, i = 1, 2, 3}. The Lagrange equations simplify
to

(4.16)
xi + t

x
2/(1+p)
i

= c

for some constantc andi = 1, 2, 3, so here, too, we only need to focus on the case when, say,
x1 = x2, which can only happen if

(4.17) x1 = x2 =
2 + ε

3
, x3 =

2 + ε

3ε
,
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whereε > 0 is arbitrary. With these values,f = f(ε) takes on the form

(4.18) f(x1, x2, x3) = f(ε) = 2
3p

(2 + ε + 3t)p
+

3pεp

(2 + (1 + 3t)ε)p .

ε is a critical point off(ε) if and only if it satisfies the equation

(4.19) h1(ε) := (2 + ε + 3t)ε
p−1
p+1 = 2 + (1 + 3t)ε =: h2(ε).

Also, f ′′(ε) > 0 if and only if

(4.20) (p + 1)(2 + ε + 3t)−2−p > 2ε−2+p(2 + ε + 3εt)−2−p(1 + ε− p + 3εt).

ε = 1 is always a critical point, and is a minimum (as it must be, ifM−p(x + t) ≤ x + t) is
to hold) exactly iff ′′(1) > 0, that is, ifp > 1 + 2t. From now on, then, we will assume that
p > 1 + 2t.

Define

q :=

√
1 +

9t(1 + t)

2
,

and note that for allt > 0 we have1 + 2t < q < 1 + 3t. If we substitute the identity (4.19) in
(4.20) we obtain the condition

(4.21) p(ε) := (p− 1)(3t + 1)ε2 − 4(q2 − p)ε + 2(p− 1)(2 + 3t) > 0.

p(ε) is quadratic inε, and has discriminant∆ equal to

∆ := 72t(1 + t)(q2 − p2).

If p ≥ q then∆ ≤ 0, and this means (since thenp(ε) ≥ 0 always) that every critical point of
f(ε) is a local minimum: therefore,ε = 1 must be the only local minimum in(0,∞). What is
now left to do (in the casep ≥ q) is to examine the values off(ε) for ε → 0 andε →∞. At both
ends of the domainf(ε) must still be greater or equal to3/(1 + t)p for the desired inequality to
hold. These two conditions yield, respectively, the inequalities

p > q1 :=
ln(3/2)

ln
(

3+3t
2+3t

) , p > q2 :=
ln(3)

ln
(

3+3t
1+3t

) .
Not to overburden the reader, let us just state that an analysis similar to the one we carried out
when proving (4.8) will be just as effective in showing that, for allt > 0,

q1 < q2 < 1 + 2t.

Now, since we already saw that1 + 2t < q, we conclude that whenp ≥ q the inequality
M−p(x + t) ≤ x + t will be true. The first inequality in Theorem 2.2 is thus proved.

As an aside, the case1+2t < p < q seems much harder to handle. Numerical evidence points
in the direction that for any such choice ofp there are counterexamples whereM−p(x+t) ≤ x+t
fails, but we could not prove it. We could understand why this might happen by noticing that
if p < q thenf(ε) definitely has a chance to have a second local minimum at some location
ε0 > 1. To see this, we first observe thatf(ε) cannot have more than three critical points: this is
because (cf. (4.19))h1(ε) is increasing for allε > 0, concave forε < (2 + 3t)/p and convex for
ε > (2 + 3t)/p. Sinceh2(ε) is linear, no more than three solutions of (4.19) are possible. So,
if 1 + 2t < p < q then the discriminant ofp(ε) is positive, and thusp(ε) has two distinct real
roots. Since

p(1) = 9(1 + t) (p− (1 + 2t)) > 0, p′(1) = 6(1 + t) (p− (1 + 3t)) < 0,

both roots are greater than1. Thus, in this case, iff(ε) should have one more local minimum,
then it would have to be greater than1, and, in fact, greater than the larger of the two roots of
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p(ε), since no two local minima can be consecutive critical points. The situation is technically
murky here, however, and we will not pursue the question further.

Proving the second inequality in Theorem 2.2 is, in comparison, a breeze. First notice that
Mp(x+ t) ≥ x+ t will not possibly hold in general for any negativep. On the other hand, if we
focus on the geometric mean of the numbersxi + t, the Lagrange method (under the condition
M−1(x) = 1) will very easily yield the only solutionx1 = x2 = x3, and hence a quick path to
the second inequality in Theorem 2.2. We leave the details to the reader. �
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