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Given the harmonic meap of the numbersy; (i = 1,2,3) and at €
(0, min{z1,z2,z3}/u}), we determine the best power mean exponerasd
g such thatM, (z; — tp) < (1 — t)u < My(z; — tu), wherep andg only
depend ort. Also, fort > 0 we similarly handle the estimatéd, (z; + tu) <
I+ < My(zi + tp).
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1. Introduction

Three pointsD, F, F, one on each of the sides of a triangl&C, form a triangle
DEF that partitions the original one into four sub-triangles. The Erdés-Debrunner
inequality says that

min{Al, A27 A3} S A4,
where A, Ay, Az are the areas of the corner triangles, ahdis the area of the
central triangle. In3J], Janous conjectured that the optimal improvement would be
given by

qu(Ala A2> Ad) < A4

whereM _, denotes th¢—g)-power mean with
In(3/2)

In2

(Janous proved the above inequality wjth= 1. See the classical referendsg for

more on power means). In our papdf yve confirmed Janous’ conjecture. In the
course of our proof we revealed some equivalent formulations of this optimal result,
one of which is:

Theorem 1.1 (B, Cor. 6]). Letp > In(3/2)/1n(2). Then for all triangles with sides
a,b andc and semi-perimetet, the inequality

s—a\’ (5= b\? L (5= P S 3
a b c - 2r
is valid. In terms of power means,

(1.1) M_p( a b C)gz.

s—a's—b's—c

Extension of the Erdés-Debrunner
Inequality

Vania Mascioni

vol. 9, iss. 3, art. 67, 2008

Title Page
Contents
44 44
< >
Page 3 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:vmascioni@bsu.edu
http://jipam.vu.edu.au

Our aim here is to gain a better understanding of where the num{3®)/ In 2
in Theorem1.1 comes from. To do so, we first apply a change of variables to the
inequality (L.1). After definingz, = -, 2, := %5, 23 == >, (1.1) takes on a
form which for clarity we state as a new theorem (for simplicity of notation, we will
denote the-power mean of the numbers, x5, z3 sSimply by M, (x)).

Theorem 1.2.Forall z; > 1 (i = 1, 2, 3) such that

(12) M—l(‘r) = 37
we have
(1.3) M4 (z—1)<2,

whereq = In(3/2)/In(2).

It is now very easy to check thatis optimal in these results: let > 0 and
consider the special case

2+¢
pad

$1:$2:2+€, T3 =
(1.2) is obviously satisfied, and (by lettirg— 0)
M_,(xr—1)<2
can only hold ifp > ¢ = In(3/2)/In(2).

.|\
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2. Main Results ||\v

M
P A

In the light of the formulation of Theorer.? we see that the new problem is:
Given three numbers with a certain harmonic average, predict the best exponent
for a power mean estimate of these numbers after they have been all reduced (or
augmented) by a fixed amouittis point of view leads us to the following general-

ization (note that Theorerh.2is a special case of this after setting= 3, ¢ = 1/3, Extension of the Erdos-Debrunner
where the value of matches the requirement thgt> 1 fori = 1,2, 3). Ll
Vania Mascioni
Theorem 2.1.Letx; > 0 ( = 1, 2, 3) be such that vol. 9. iss. 3, art, 67, 2008
(21) M—l(‘r) =
: Title P
and fixt € (0, min{zy, z2,z3}/u}). Then we have e Page
Contents
(2.2) Mo(x —tp) < (1 —t)p < My, (z—tp) if 2/3<t<1,
(23) M, (z—tp) < (1—t)u< M, (x—ty) if 1/3<t<2/3, « »
(24) My (v —tp) < (1—tu<My(z—tu) if 0<t<1/3, « >
where Page 5 of 22
QI — M q2 fd M GO Back
n(E) ()
3t t—3 Full Screen
It is understood thag;, = 0 whent = 2/3, andg, = 0 whent = 1/3. e

The proof of Theoren2.1 will be rather technical, and accordingly we thought
it wise not to pursue further generalizations in this paper, although we are certainly
working on it. Similar statements are possible when estimating the means of more
than three numbers, and it should also be possible to prove extensions to the case
when the hypothesis is not just knowledge of the harmonic mean, but any given
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mean. Again, we decided not to pursue these more general directions right now as
the technicalities would have easily overshadowed the main purpose of this note,
even in the simplest next case, thatiss 4.

If one addstu to thex;, instead of subtracting, we have a result whose proof
shows non-linear intricacies even harder than the ones offered by Th&orem

Theorem 2.2.Letx; > 0 (: = 1, 2, 3) be such that

Extension of the Erdés-Debrunner
Inequality

M—l(aj) = M, Vania Mascioni
and fixt > 0. Then we have Vo 911585, art 61, 2008
M_ < (1 < M,
gl@+tp) <1+t < My(x+tp), Title Page
where ST Contents
g=1/1+ — <« »
Whetherg is best possible is open. However, numerical evidence shows that at least < >
. 3 .
for somep with p € (1 + 5t q) and for somex;, M_,(z +tp) < (1 +t)u may be Page 6 of 22
false.
. _ _ Go Back
The proofs of Theorems.1and2.2will be found in Section!.
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3. Applications

As an application of Theorem 1we have the following refinement of the case- 3
of the famous Shapiro cyclic inequality. Sdé for a survey of the topic, and] for
a recent related result.

Theorem 3.1.Letay, as, a3 > 0, with at most one of the; being zero. Then, with
the index: cycling throught, 2, 3,

‘ 1 ,
(3.1) M, (L) <= <M, (L) :
(i1 + Aig2 2 Ait1 + Qg2
whereq = In(3/2)/1n(2) ~ 0.58496.

Proof. Definingz; := (a1 + as + a3)/(a; 11 + a;12) We see that the harmonic mean
M_(x) equals3/2. We apply then Theoreri.1 (specifically, £.2)) in the case
w=3/2,t=2/3toimmediately obtaini.1). O

For comparison, note that the case= 3 of the original problem posed by
Shapiro p] was stating the simpler inequality

Lo (_) |
2 Qi1+ Aigo
Before we embark on the proofs of Theorefhé and 2.2, we want to show a
possible use of Theoref?2in a special situation. It is a trivial fact that, given any
positivea,, as, az, the arithmetic mean of the sums+ as, as + as, az+a; is simply
twice the arithmetic mean of the. But what about other power means of the sums
a;+a;,1? The next result shows that the power means &fa; ., seem to be related

to the classical problem of estimating the difference between the arithmetic and the

harmonic mean of the; (see p, 2.14.3] for more on the topic).
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Theorem 3.2. Let aq, a9, az > 0 and, for simplicity, denote their harmonic and

arithmetic means by _, := M_;(a) andu, := M, (a), respectively. We then have
Mo(a; + air1) < 3py — poy < My(a; + aiv),
where

1 N/Chn-—2ulﬂ9u1—-uﬂ

q g
H—1 2

Proof. This follows from Theoren2.2 after first observing that, with := a; +a, +

as,
M ( ;i ) ok,
g — a; 3py — pi—q

If we now choose to satisfyty = 1 (i.e.,t = 3}% — 1), Theorem2.2yields (since
(73 + 1 — g )

o—ay o—a;

(i) s ()
g — a; 3py — pi—q o — a;

and the result follows from simple algebra, the fact that 3p,, and after finding
what the formula for in Theorem?2.2 translates into in the current case. O

Corollary 3.3. Letay, as, as > 0, and define
C' := (maxa;)/(mina;).

Then
Ml(a) — Mfl(cl) S Mq(ai —+ CLZ'+1) — 2M1(Cl>,
where

_ 1 [(9C? 1100 + 9)(9C% + 14C + 9)
1= 1c 2 ‘

Extension of the Erdds-Debrunner
Inequality

Vania Mascioni

vol. 9, iss. 3, art. 67, 2008

Title Page
Contents
44 44
< >
Page 8 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:vmascioni@bsu.edu
http://jipam.vu.edu.au

Proof. This follows from Theoren®.2 and the following classical result of Specht
giving the upper bound of the ratitd; /M _; in terms ofC' (see b, 2.14.3, Theorem

1])

mo_ (CF 1)?
p—y —4C
O
Extension of the Erdés-Debrunner
Finally, before we get started with the proofs of the main theorems, we present IEE ey

a couple of simpler observations, given here purely for illustrative purposes. First, VT T
let us state the trivial (though natural) version of Theoremin the case of two vl B 25 £, BN G, 2000
variables.
Theorem 3.4.For all z; > 1 (i = 1,2) such that Title Page
(3_2) M—l(xh x2) —9 Contents

<« >
we have

< >
(3.3) M,(x1 — 1,29 —1) <1= My (21 — 1,20 — 1)

Page 9 of 22
forp < 0.

Go Back
Proof. This follows from the the obvious fact that.¢) impliesz, — 1 = 1/(x; —
1)_ 0 Full Screen
Close

Also as a curiosity and as an example of the multi-variable statements that are

possible (in the vein of Theoref1), we have the following journal of inequalities

Theorem 3.5.Letz; > 1 (i =1,...,n) be such that in pure and applied
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Then
M (x—1)<n—1< M(z—1).

Note that the first inequality can be rewritten as

i=1 i= i=1

Proof. Let f(h) be the function
M_y(xy4+h,...,x, + h).

A calculation gives that

f/(h)_ (M—1($1+ha"'7xn+h))2
- M_Q(.l’l—f—h,...,l'n—f—h)
and this shows that'(h) > 1 for all h > —1. In particular,

fO)=f(=1) =1

by the mean value theorem, and this is the first inequality.

1 (<1 "1 - 1
ﬁ(zz)(zm_l)ﬁzm-
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4. Proofs of Theorems2.1and 2.2

Proof of Theoren2.1. Without loss of generality we will prove Theorel in the
caseu = 1. In the first part of the proof we will verify the first inequalities in.),

(2.3 and @.4). To do so, we will apply the method of Lagrange multipliers on the

domain{(zy, 2, z3) € R® | z; > t, i = 1,2, 3} to find the minima of

1 1 1

fevens) = oG Y G T m—

under the condition
1 1 1
+—+
T To I3
Clearly, this investigation is only of interest for< p < 1. The Lagrange equations
simplify to

22/0)

(4.2) =c

for some constant and: = 1,2,3. The derivative of the function(z) = (z —
t)/x?/(+2) (for x > t) has the same sign as—(1—p)x and soh(x) has precisely one
critical point (a maximum) at = 2t/(1 — p). This means that the only possibility
we need to study is when, say, = x,, which can only happen if

2+e¢€ 2+¢€

) T3 = )
3 3e

for somee > 0 such thatr; — ¢t > 0 for i = 1,2, 3 (recall that we are handling the
caseu = 1 here, meaning that, 1/z; = 3). e must therefore satisfy the inequalities

(42) Tl = Ty =

(4.3) 3t—2<e and (3t—1)e<2.
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J

These conditions will force us to distinguish between three cases because of the ||\v

different possible ranges fer o

Casel:2/3 <t < 1.Here3t—2<e<2/(3t—1). o

Casell: 1/3 <t < 2/3. Inthis casd) < ¢ < 2/(3t — 1). P

Case lll: 0 <t < 1/3. Now e can be any positive number.
With values as in4.2),

p p_p Extension of the Erdés-Debrunner
3 e Inequality

(2 + € — 3t)p + (2 + (1 — 3t)€)p’ Vania Mascioni

vol. 9, iss. 3, art. 67, 2008

(4.4) f(wr, w2, 23) = f(e) =2

and the cases we just described specify the domaif{of for any givent. The
derivative of f with respect ta is

Title Page
fe)=2-3p(e"P(2+e—3et) P — (2+€e—3t)"'7P)

Contents
and so its critical points must satisfy the equation « o
(4.5) gi(€) =2+ €e—3t = (24 € — 3et)ermr =: go(e). p >
e = 1 is always a critical point of (¢). After inspectingf” (1) we also see that= 1 Page 12 of 22
can only be a minimum ip > 1 — 2¢, which we will assume from now on. In Cases
land Il (¢ > 1/3), g2(e) is always concave on its domain, and gd5( can have at Go Back
most two solutions since, (¢) is linear. And since one of these critical points is the Full Screen
local minimum ate = 1, the other one (if any) cannot be a local minimum, too. In
Case Ill (if0 < t < 1/3), g2(€) is increasing for alt > 0 and, since Close

" _ 9,.—3+2/(1+p) —2/1 _ . . journal of inequalities
9o (€) = 2¢ (1+p)*(1 = p)((1 = 3t)e — 2p), - oure and qup"ed

we see thai, (¢) is concave it < 2p/(1 — 3t) and convex it > 2p/(1 — 3t). Since mathematics
g1(0) = 2 =3t > 0 = g2(0), we conclude that45) has at most three solutions issni 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:vmascioni@bsu.edu
http://jipam.vu.edu.au

and thus thaf (¢) has at most three critical points. It actually happens that there are
exactly three critical points in Case lll. In fact, the inequality

2
gh(1) = m(z—?)t—p) <1
is equivalent tgy > 1 — 2¢, and so it holds by our assumption. Because of thig,)
must crosgy; (e) ate = 1 with a slope smaller thah, and thus = 1 is the middle
of the three critical points of (¢). We therefore know that = 1 is the only local
minimum of f in all cases.

Summarizing, we have shown that in all possible cases the mininfiéepill
result from comparingf(1) with the values (or limits) off (¢) at the endpoints of
the allowable intervals foe. We proceed now to do so, while still distinguishing
between the same three cases for separate ranges for

Casel: 2/3 <t < 1. Here3t — 2 < e < 2/(3t — 1), and the values of close
to the endpoints are seen to tend to infinity. Consequefitly, yields the absolute
minimum of f. We conclude that for these valuestofe will have M_,(z —t) <
1 —t¢forall p € (0,1) and, passing to the limig — 0, the same applies to the
geometric average

Mo(z —t) = ((z1 — ) (22 — t) (25 — 1))/* < 1 —t.

That no higher power mean (that is, of the typg(x) with » > 0) would work
follows from the fact that for our choice afy, x5, z3 the expression’ + x5 + 3
grows out of bounds for small enough

Case Il: 1/3 < t < 2/3. Inthis case) < ¢ < 2/(3t — 1). Values ofe
tending to the right endpoint will causéto grow arbitrarily, whilelim, ., f(e) =
2-37/(2 — 3t)P. The latter is never smaller thari(1 — ¢)? if and only if
In(3/2)

~ (G5

(4.6)

Extension of the Erdés-Debrunner
Inequality

Vania Mascioni

vol. 9, iss. 3, art. 67, 2008

Title Page
Contents
44 44
< >
Page 13 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:vmascioni@bsu.edu
http://jipam.vu.edu.au

We must now measure this condition feragainst the one we had obtained at the
beginning,p > 1 — 2¢t. We claim that {.6) is stronger, that is,

n (55
when0 < ¢t < 2/3. With
s(t) :==In (2:—2;) (1 —2t),

we have
1 1

1
(t) = - ol (14— .
W=7 0-y n(+2—3t)

Since for allz > 0 the classical inequalitin(1 + 1/x) > 2/(2z + 1) holds (see},
3.6.18]), a little algebra shows that

3—4t

-D2—36G_6) ~ "

s'(t) < —

Therefore,s(t) is decreasing on € (0,2/3) and is thus always less thaf0) =
In(3/2) there, proving4.7). (4.7) being true, to complete the discussion of Case I
we may now state that/_,(z —t) < 1 —t, where

In(3/2)

4= 33
In (5=5)

and this choice of is optimal.
Case lll: 0 < t < 1/3. In this case can be any positive number, and the limits
of f(e) fore — 0 ande — oo are given by2 - 37 /(2 — 3t)? and3?/(1 — 3t)?. By
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our discussion of the critical points g¢f(¢) the absolute minimum of (¢) is either

one of these two values, gi(1). For3?/(1 — 3t)? to always be greater or equal to

3/(1 —t)? we need to have
In3

P2 3
In (3=5¢)
This condition is actually weaker tha#.(), that is, we always have
In(3/2) In3

n(5=5) I (3=5)

(4.8)

when0 < ¢ < 1/3. A way to convince ourselves of this is to consider the function

In ($=5¢)
In (222)°

2—-3t

(4.9) h(t) =

Notice that its derivative fot € (0, 1/3) has the same sign as

1
) —aln <1 + 2) ,
a+1 a
where for convenience we wrote= 1—3t (and thus: € (0, 1)). The latter function

of a has the derivative
a? + 2a
In({— |,
(a+1)2

which is always negative far € (0,1). This implies that the expression i#.({0)
is decreasing of0, 1) and hence it is always greater than its value at 1, which
is41n(3/2) — In3 = In(27/16) > 0. This means that the function afin (4.10) is
always positive for € (0, 1), and in turn this implies that(¢) as defined in4.9) is
increasing fort € (0,1/3). Finally, sinceh(0) = In(3)/1n(3/2) > 0, h(t) is always

(4.10) 2m+1ﬂn(
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greater thark(0), and the inequality4.9) is established. To wrap up the first part
of the proof, we can now state that the first inequalitie2i)( (2.3) and ¢.4) are
proved.

Let us now check the second inequalitiesir?y, (2.3) and @.4), still assuming,
for simplicity, that)/_, (z) = 1. To see for whictp > 0 we haveM,(x —t) > 1—t,
we need to minimize

Extension of the Erdés-Debrunner
g(l‘l, 132.1’3) = (271 - t)p + (l’z — t)p + (ZE3 - t)p, Inequality

Vania Mascioni

and thus the Lagrange equations are now Vol 9, iss. 3, art. 67, 2008

iz — )P =c

for some constantandi = 1, 2, 3. Certainly, sincél/;(z — 1) > 1 — ¢ is trivial, we Title Page

can restrict our attention o< (0, 1). Since the function?(x — 1)?~! decreases for Contents
x < 2t/(1+ p) and increases for > 2¢/(1 + p), we are in a situation similar to the

first part of the proof, with only the need to consider the same special situation as in 44 dd
(4.2). In this caseg as a function ot becomes < >
2 1 —3t)e)?
g(e) =377 (2(2 +e— 3t)P + ( +< . )6) ) ] Page 16 of 22
€ Go Back
Similarly to the way we handled in the first part of the proof, we see now that the
.. . . . Full Screen
critical points ofg(e) must satisfy the equation
91 3 Close
€ — 1+
(4.11) SO T,
24+ e — 3et journal of inequalities
If 0 <t < 1/3, the left hand side is concave, the right hand side is convex, and so In pure and applied
mathematics

(because of their initial values at= 0) e = 1 must be the only critical point af(e).

Sinceg(e) is unbounded for close to0 or when tending tao, we conclude that pesn MHaTeTE
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e = 1 yields the absolute minimum gf¢) in this case, and thu¥l,(z — t) > = —t.
Lettingp — 0 shows that if0 < ¢ < 1/3 we haver —t < My(x — t), as claimed in
(2.4) (the statement for = 1/3 follows by continuity).

Whent € (1/3,2/3) we rewrite ¢.11) in the form

(4.12) 2 b e—3t=er (24— 3et) = gsle).

gs(¢€) is increasing fok < 2/(3t — 1) and decreasing far > 2/(3t — 1). From its
second derivative we also see that it is convexfer (1 + p)/(3t — 1), and concave
fore > (1+p)/(3t —1). Fort € (1/3,2/3) we havel < (1 + p)/(3t — 1). Hence,
g3(€) meets the left hand side of (L2) ate = 1 for the first time, and thus there is
exactly one other critical point af(¢) (at the right ofe = 1), and there we must have
alocal minimum. For smad, g(¢) is arbitrarily large and thus, as we are looking for

a minimum, we only need to consider the possibility offered by the right endpoint of
the admissible interval (see Case Il above), i.e.,

2 2\
L R I, T L o
g(3t—1) ( +3t—1)

In order to havel/,(x — t) > 1 — ¢t we must have that this value be greater or equal
to 3(1 — ¢)?, which leads to the condition
In(3/2)

3t—1

(4.13)

as stated in4.3). Finally, we consider the cag¥3 < ¢t < 1, where (as in Case |
in the first half of the proofBt — 2 < ¢ < 2/(3t — 1). First we observe that since
the valueg(3t — 2) at the left endpoint must be at leagtl — ¢)? in order to have

M,(x —t) > 1 —t, we must have

93— 2) = (%) > 3(1— 1y,
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that is,

In3

p>
In (5%5)

(4.14)

In complete analogy with4(8), for t € (2/3,1) we have the inequality

In(3/2) - In3
In(55) ~ In(5%5)

meaning that the condition irl (13 trumps the one in4 14) (we leave the details
to the reader). Since convexity and concavityg(ie) (as in ¢.12) are the same as
in the previous case, we still have thit) admits at most two critical points inside
the admissible interval for. By inspecting the second derivative gifc) ate = 1,
we see that its sign is the same as the sigh efp — 2¢. We will therefore have a
minimum ate = 1 if and only if p > 2¢ — 1, and this latter condition will certainly
hold if

In(3/2)
In ()
Once again, in complete analogy with.{) (and again using the inequality,[
3.6.18] to simplify the estimate) we can prove that the function

o ()

is strictly increasing in the intervaR/3, 1), and thus 4.15 readily follows. To
conclude, since = 1 is the only minimum of;(¢) in the interval(3t —2,2/(3t — 1),
and since we already discussed the conditign$3 and ¢.14) resulting from the
values ofy(¢) at the endpoints, our work is done and Theofefris now proved. [

(4.15) p> > 2t — 1.
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Proof of Theoren?.2. Assume that:, =5, 3 > 0 are given such that/_;(z) = 1,
and fixt > 0. The search fop that satisfyM_,(x +¢) < 1 + ¢ starts out as in the
proof of Theoren?.1. Assume thap > 1, since this is the only range that could
yield possible non-trivial values @f. We need to find the minima of

f( ) 1 n 1 L 1
T1,To,T3) =
PR 0 (et (g 4 )P
under the condition
1 1 1
—+—+—=3

T X2 xs

and over the domaid(z;, 72, 73) € R® | x; > 0,7 = 1,2,3}. The Lagrange
equations simplify to
x; + t

for some constantandi = 1, 2, 3, so here, too, we only need to focus on the case
when, sayy; = x4, Which can only happen if

2+¢€ 2+¢€
4.17 =19 = =
( ) L1 = T2 3 T3 3¢
wheree > 0 is arbitrary. With these valueg,= f(¢) takes on the form
3P 3PeP
(418) f(xlaxZaIB) = f(E) =2

(24 (1 +3t)e)?

e is a critical point off (¢) if and only if it satisfies the equation

PETEEDT

(4.19) hi(e) == (2+ e+ 3t)ez%r} = 24 (14 3t)e =: ha(e).
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Also, f"(e) > 0 if and only if
(4.20) (p+1)(24€+3t)"2P > 22 P(2 + €+ 3et) > P(1 + € — p+ 3et).

e = 1 is always a critical point, and is a minimum (as it must be\/f,,(x + t) <
x + t) is to hold) exactly iff”(1) > 0, that is, ifp > 1 + 2¢. From now on, then, we
will assume thap > 1 + 2t.

Define Extension of the Erdés-Debrunner
/ gt(l + t) Inequality
q-= 1 + T7 Vania Mascioni
and note that for all > 0 we havel + 2t < ¢ < 1 + 3t. If we substitute the identity vol. 9, iss. 3, art. 67, 2008
(4.19 in (4.20) we obtain the condition
(4.21) ple) == (p— 13t + 1) —4(¢*> —p)e +2(p — 1)(2+ 3t) > 0. Title Page
p(e) is quadratic ine, and has discriminank equal to Contents
A =T72t(1 +t)(¢* — p?). «“ >
If p > g thenA < 0, and this means (since the(e) > 0 always) that every critical < >
point of f(¢) is a local minimum: therefore, = 1 must be the only local minimum
in (0,00). What is now left to do (in the cage > ¢) is to examine the values of PREE 2 22
f(e) fore — 0 ande — oo. At both ends of the domaifi(¢) must still be greater Go Back
or equal ta3/(1 + t)? for the desired inequality to hold. These two conditions yield,
respectively, the inequalities Full Screen
- In(3/2) - In(3) Close
P> =733 P~ 492= 733y
In (55) In (35)
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Now, since we already saw that+ 2t < ¢, we conclude that whep > ¢ the
inequality M_,(x 4+ t) < x + t will be true. The first inequality in Theorem 2 is
thus proved.

As an aside, the cade+ 2t < p < ¢ seems much harder to handle. Numerical
evidence points in the direction that for any such choice tfere are counterex-
amples wherel/_,(x +t) < x + ¢ fails, but we could not prove it. We could
understand why this might happen by noticing that i ¢ then f(¢) definitely has
a chance to have a second local minimum at some location1. To see this, we
first observe thaf (¢) cannot have more than three critical points: this is because
(cf. (4.19) hy(e) is increasing for alk > 0, concave fok < (2 + 3t)/p and convex
for e > (2 + 3t)/p. Sincehy(e) is linear, no more than three solutions ¢f19 are
possible. So, ifl + 2t < p < ¢ then the discriminant of(¢) is positive, and thus
p(€) has two distinct real roots. Since

p(1)=9(1+t)(p—(1+2t)) >0, p(1)=6(1+1t)(p—(1+3t)) <0,

both roots are greater than Thus, in this case, if (¢) should have one more local
minimum, then it would have to be greater thgnand, in fact, greater than the
larger of the two roots (), since no two local minima can be consecutive critical
points. The situation is technically murky here, however, and we will not pursue the
guestion further.

Proving the second inequality in Theoren? is, in comparison, a breeze. First
notice that\/,(z + t) > x + t will not possibly hold in general for any negatiye
On the other hand, if we focus on the geometric mean of the numbekst, the
Lagrange method (under the conditidf ; (x) = 1) will very easily yield the only
solutionz; = x5 = x3, and hence a quick path to the second inequality in Theorem
2.2. We leave the detalils to the reader. O]
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