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Let f(z,y, z) be a cyclic homogeneous polynomial of degree four with three
variables which satisfieg(1,1,1) = 0. In this paper, we give the necessary
and sufficient conditions to hav&(z,y, z) > 0 for any real numbers;, y, z.

We also give the necessary and sufficient conditions to févey, z) > 0 for

the case wherf is symmetric and:, y, z are nonnegative real numbers. Finally,
some new inequalities with cyclic homogeneous polynomials of degree four are
presented.
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1. Introduction

Let z,y, z be real numbers. The fourth degree Schur’s inequalgy [p], [7]) is a
well-known symmetric homogeneous polynomial inequality which states that

(1.1) Zm4 + xysz > Zmy(af +v7),

where) " denotes a cyclic sum over, y andz. Equality holds forr = y = z, and
forr =0andy = z,ory =0andz = x, orz = 0 andz = .
In [3], the following symmetric homogeneous polynomial inequality was proved

(1.2) Z ' +8 Z ?y? >3 (Z a:y) <Z :1:2> ,
with equality forr =y = z,andforz/2 =y = z,0ry/2 =z = z,0rz/2 = x = .
In addition, a more general inequality was proved3hfpr any realk,

(1.3) > (@ —y)a—ky)x =)@ —kz) = 0,
with equality forx = y = z, and again fo:/k = y = z, ory/k = z = z, or
z/k = x = y. Notice that this inequality is a consequence of the identity
1
Y (@—y)(a—ky)(z—2)(x — kz) = 3 > -2y +z—x— k)

In 1992, we established the following cyclic homogeneous inequdljty [

(1.4) (Z x2)2 >33 oty

which holds for any real numbeis y, z, with equality forz = y = z, and for
T Y z

2 dr 227 2
sin” =2 sin” =
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or any cyclic permutation thereof.
Six years later, we established a similar cyclic homogeneous inequglity |

(1.5) Zx4 + ng > QZx?’y,
which holds for any real numbeis y, z, with equality forz = y = z, and for
:L’smz s1n7—7T 2511113—7T
g Y9 T

9
or any cyclic permutation thereof.
As shown in B], substitutingy = = + p andz = = + ¢, the inequalitieg .4) and
(1.5) can be rewritten in the form
(p* = pg +¢*)2* + f(p, @)z + g(p,q) > 0,
where the quadratic polynomial efhas the discriminant
01 = =3(p° — p’q — 2pg" + ¢°)* <0,
and, respectively,
= =3(p> = 3pg® + ¢°)* < 0.

The symmetric inequalitiegl . 1), (1.2) and(1.3), as well as the cyclic inequal-

ities (1.4) and (1.5), are particular cases of the inequalifyz,y,z) > 0, where
f(z,y, z) is a cyclic homogeneous polynomial of degree four satisfyifig1,1) =
0. This polynomial has the general form

1.6) f(z,y,2) —wa —H“Zx
+ptg—r—wayz) w—pY Py—q)y wy’

wherep, ¢, r, w are real numbers. Since the inequalityr,y, z) > 0 with w < 0
does not hold for all real numbersy, z, except the trivial case whete=p = ¢ =
0 andr > 0, we will considerw = 1 throughout this paper.
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2. Main Results

In 2008, we posted, without proof, the following theorem in the Mathlinks Forum

[4].

Theorem 2.1. Letp, ¢, r be real numbers. The cyclic inequality

(2.2) Zx +7‘ny +p+q—r—1)xy22xZpr?’eran:y?’
holds for any real numbers, y, z if and only if
(2.2) 3(1+7)>p* +pg+q*.

Forp = ¢ = 1 andr = 0, we obtain the fourth degree Schur’s inequality! ).
Forp = ¢ = 3 andr = 8 one getg1.2), while forp = ¢ = k + 1 andr = k(k + 2)
one obtaing1.3). In addition, forp = 3, ¢ = 0 andr = 2 one getg.4), while for
p=2,q= —1andr = 0one obtaing1.5).

In the particular cases=0,r =p+qg—1,q = 0 andp = ¢, by Theoren?.1,
we have the following corollaries, respectively.

Corollary 2.2. Letp andq be real numbers. The cyclic inequality
(2.3) Zx4+(p+q—1)xy22x2p2x3y+q2xy3
holds for any real numbers, y, z if and only if

(2.4) P’ +pg+q* <3

Corollary 2.3. Letp andq be real numbers. The cyclic inequality

(2.5) Zm4+(p+q—1)2x2y2Zpr?’erquy?’
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holds for any real numbers, y, z if and only if

(2.6) 3(p+q) > p*+pg+ ¢

Corollary 2.4. Letp andq be real numbers. The cyclic inequality

(2.7) Zx4+r2x2y2+(p—r—1):vy22xEpZ:Bgy

holds for any real numbers, y, z if and only if
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From Theoren?.1, settingp = 1+ v/6, ¢ = 1 — v/6 andr = 2, and therp = 3,
g = —3 andr = 2, we obtain the inequalities:

(2.12) (Z x2> (Z 2% - ny) > V6 (Z 2y — Z:czﬁ) ,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,
wherea = 0.4493 and3 ~ —0.1009 were found using a computer;

(2.13) (@ + 17 +2°)? = 3) ay(a® — ¢’ +2%),

with equality forz = y = 2, and forx = y/a = 2/ or any cyclic permutation,
wherea ~ 0.2469 and =~ —0.3570.
From Corollary?.2, settingp = v/3 andg = —/3 yields

(2.14) Zx4—xy22x > \/§<Zx3y—2my3> ,

with equality forz = y = z, and forx = y/a = z/8 or any cyclic permutation,
wherea =~ 0.3767 and3 ~ —0.5327. Notice that ifx,y, = are nonnegative real
numbers, then the best constant in inequdlity4) is 21/2 (Problem 19, Section 2.3
in [3], by Pham Kim Hung):

(2.15) Zx4 — xysz > 2v/2 <Z a3y — ny3> )

From Corollary?.3, settingp = 1 + /3 andq = 1, and therp = 1 — /3 and
g = 1, we obtain the inequalities:

218 ot =Y at = (14V3) (Yt - Y e,
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with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,

wherea ~ 0.7760 and ~ 0.5274,;

(2.17) St =Dtz (VB-1) (et - D aty).

with equality forz = y = 2, and forx = y/a = 2/ or any cyclic permutation,

wherea =~ 1.631 andj ~ —1.065.

From Corollary?2.4, setting in successiop = /3 andr = 0, p = —v/3 and
r=0,p==6andr =11,p=2andr =1/3,p=—landr = -2/3,p=1r =
(3++v21)/2,p=1andr = —-2/3,p=7r = (3—+/21)/2,p = V6 andr = 1, we

obtain the inequalities below, respectively:

(2.18) Zx —i—< 3—1>xyz233>\/_2x Y,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,

wherea =~ 0.7349 and ~ —0.1336 (Problem 5.3.10 in€]);

(2.19) Zw4+\/§Zx3y > (1+\/§> xysz,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,

wherea =~ 7.915 and ~ —6.668;

(2.20) Z:z:4 + 11 Zx2y2 >6 (Z 2y + :cysz) ,

with equality forz = y = 2, and forx = y/a = 2/ or any cyclic permutation,

wherea ~ 0.5330 and3 =~ 2.637;

(2.21) 3yt + (X xy)2 > 6 o'y,
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with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,
wherea ~ 0.7156 and 3 =~ —0.0390;

(2.22) doat > aty > % (Z xy)z,

with equality forz = y = z, and forx = y/a = z/( or any cyclic permutation,
wherea ~ 1.871 and( ~ —2.053;

(2.23) Zx4 — a:ysz > % <Z 3y — Zx2y2> ,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,
wherea ~ 0.570 and$ ~ 0.255;

(2.24) Zx4 — Zx3y > % (Z z2y? — xysz) ,

with equality forz = y = z, and forx = y/a = z/( or any cyclic permutation,
wherea ~ 0.8020 and 3 ~ —0.4446;

(2.25) doat—ayry x> @ (Z 'y’ — Zm%) :

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation,
wherea ~ 1.528 and( ~ —1.718;

(2.26) > @ —y2)? = V6> ay(e - 2),

with equality forz = y = 2, and forx = y/a = 2/ or any cyclic permutation,
wherea =~ 0.6845 andj3 ~ 0.0918 (Problem 21, Section 2.3 i13]).
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From either Corollary?.5or Theoren?.6, settingr = p? — 1 yields

227) D+ (-1 PP +pR2—payz Y w>p Y ay(a® +17)

which holds for any real numbegsandz, y, z. Forp = k + 1, the inequality(2.27)
turns into(1.3).

Corollary 2.7. Letx,y, z be real numbers. Ip, ¢, r, s are real numbers such that

(2.28) prq—r—1<s<2(r+1)+p+q—p*—pg—¢,
then
(2.29) Zx4+r2x2y2+sxyz2x 2p2x3y+q2xy3.
Let r+s+1—-—p—gq
o= 5 > 0.

Since
3(1+r—a)>p’+pg+

by Theoren?.1we have

Zx4+(r— ny + a+p+q—r—1)xyz2x2pZ$3y+quy3.

Adding this inequality to the obvious inequality

o () =0

we get(2.29).
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From Corollary2.7, settingp = 1, ¢ = r = 0 ands = 2, we get

(2.30) Z ot + 2wyz Z T = Z z’y,

with equality forz = y/a = z/3 or any cyclic permutation, wheke ~

3 ~ —0.4451. Notice that(2.30) is equivalent to

(2.31) Z(2x2 — =2 —ay+yz)?+4 <Z a:y)z > 0.

0.8020 and
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3. Proof of Theorem?2.1

Proof of the SufficiencySince

1
Zx2y2 — xyxe = §Zz2(y —2)? >0,
it suffices to prove the inequality. 1) for the least value of, that is

LAt e
3

On this assumptior(2. 1) is equivalent to each of the following inequalities:

1.

(3.1) Z[QZBQ —y? =22 —pry+ (p+ qyz — qza)? > 0,

(32 Y By -3 —(p+20)wy — (p—q)yz + (2p+q)zz)* >0,

(3.3) 3[22° —y® — 2* — pry + (p + q)yz — qza]?
+ [3y* =32 — (p+ 2¢)zy — (p — Q)yz + (2p + q)zz]> > 0.
Thus, the conclusion follows. ]

Proof of the Necessityror p = ¢ = 2, we need to show that the conditior> 3 is
necessary to have

Doattry Byt B-rayz) w22y dly+2) ay’
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for any real numbers, y, z. Indeed, setting = z = 1 reduces this inequality to
(z—1D*+ (r—3)(x —1)* >0,

which holds for any reat if and only if » > 3.
In the other cases (different from= ¢ = 2), by Lemma3.1below it follows that
there is a triplga, b, ¢) = (1,b,¢) # (1,1, 1) such that

Cyclic Homogeneous Polynomial

Z[2a2 —b* — % — pab + (p + q)bc — qca)® = 0. Inequalities
. Vasile Cirtoaje
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r > M -1 Full Screen
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Proof. We consider two caseg:= ¢ # 2 andp # gq.
Casel. p=q # 2.
It is easy to prove thatr,y,z) = (1,p — 1,1) # (1,1,1) is a solution of the
equation(3.4).
Case2. p # q.
The equatior{3.1) is equivalent to

22 — 22 —2® —pyz+ (p+ q)zx — qry =0
222 — 2% —y? —pzr + (p+ q)xy — quz = 0.

Forx =1, we get

2P — 22— 1—pyz+ (p+q)z — qy =0
(3.5) { y'—z pyz+ (p+q)z —qy

2:2—1—y*—pz+ (p+q)y — qyz = 0.

Adding the first equation multiplied by 2 to the second equation yields

(3.6) A2+ )y —p—2¢ =3y + (p — 9y — 3.

Under the assumption thétp + q)y — p — 2¢ # 0, substitutingz from (3.6) into the
first equation(3.5) yields

(3.7) (y — D)(ay® + by* + cy —a) =0,

where
a=9—2p*—5pg — 2¢°,
b=9+6p—6q—3p°+3¢° + 2p° + 3p°q + 3p¢® + ¢°,
¢c=—9+6p—6q — 3p> + 3¢> — p* — 3p*q — 3pq® — 2¢°.
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The equation(3.7) has a real root; # 1. To prove this claim, it suffices to show
that the equationy® + by* + cy — a = 0 does not have a root of 1; that is to show
thatb + ¢ # 0. This is true because

b+c=12(p—q) —6(p* —¢*) +p° — ¢
= (p — q)(12 = 6p — 6¢ + p* + ¢° + pg),
Cyclic Homogeneous Polynomial

and Inequalities
p—q#0, Vasile Cirtoaje

vol. 10, iss. 3, art. 67, 2009
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Substitutingy; into the first equatiorni3.5), we get

(2p+q)2* — (P> +¢* +pg)z +p+2¢=0.

To complete the proof, it suffices to show that this quadratic equation has real roots.

Due to(3.8), we need to prove that

(p* +¢* +pqg)* > 36(p+q).

For the nontrivial case + ¢ > 0, let us denote = p + ¢, s > 0, and write the
condition(3.8) as9s — 2s*> = pq. Sincedpq < s?, we find thats > 4. Therefore,

(P* + ¢* +pq)? —36(p+q) = 9(s* — 35)? — 365 = 9s(s — 1)%(s —4) > 0.

]

Cyclic Homogeneous Polynomial
Inequalities

Vasile Cirtoaje

vol. 10, iss. 3, art. 67, 2009

Title Page
Contents
44 44
< >
Page 16 of 22
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:vcirtoaje@upg-ploiesti.ro
http://jipam.vu.edu.au

4. Proof of Theorem?2.6

The conditionr > (p — 1) max{2,p + 1} is equivalentto- > p*> — 1 forp > 1, and
r>2(p—1)forp <1.

Proof of the SufficiencyBy Theorem2.1, if r > p? — 1, then the inequality2.9) is

true for any real numbers, y, z. Thus, it only remains to consider the case when

p <landr >2(p—1). Writing (2.9) as

Zx4 +:L‘yzZa: — Zmy(wQ + %)
—p) [Z wy(a® +y°) —2) nyz}

+(r—2p+2) (Zﬁgf—xysz) >0

we see that it is true because

Zx4+my22x—2my(x2+y2) >0

(Schur’s inequality of fourth degree),

day@® +y7) -2 2= aylx—y)* >0
Zx2y2—xy22x: %Zﬁ(y—z)Q > 0.

and

]

Proof of the NecessityWe need to prove that the conditions> 2(p — 1) andr >
p? — 1 are necessary such that the inequality)) holds for any nonnegative real

n\
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numberse, y, z. Settingy = z = 1, (2.9) becomes
(x—1)*[2* +2(1 —p)z +2+7r —2p] > 0.
Forz = 0, we get the necessary conditior> 2(p — 1), while forz = p — 1, we get
(p—2)%(r+1—p* >0.

If p # 2, then this inequality provides the necessary condition p> — 1. Thus,
it remains to show that foy = 2, we have the necessary conditior>> 3. Indeed,
settingp = 2 andy = z = 1 reduces the inequality.9) to

(x —1D?[(x —1)*+7r—-3]>0.

Clearly, this inequality holds for any nonnegativée and only if » > 3. O
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5. Other Related Inequalities

The following theorem establishes other interesting related inequalities with sym-
metric homogeneous polynomials of degree four.

Theorem 5.1. Letz, y, z be real numbers, and let
A:Zx4—2x2y2, B:Zx2y2—a:yzz:x,
C:ngy—xyzz.ﬁ, D:ny3—xyz2x.

Then,

(5.1) AB=C*-CD+ D*> > CD.

C*+D*_ (C+D 2
2 - 2
Moreover, ifx, y, z are nonnegative real numbers, then
(5.2) CD > B2

The equalityAB = C'D holds forz +y + z = 0, and forx = y, ory = z, 0r z = «z,
while the equalityC’D = B? holds forz = y = z, and forz = 0, ory = 0, or
z = 0.

Proof. The inequalities in Theorefm 1 follow from the identities:
D-C=(@+y+2)(z—y)y—2)(z-1),
AB = CD = (z+y+2)*(x —y)*(y — 2)*(z — )%,

AB - (C ; D) a Z(fﬁ +y+2)°2z—y)’y—2°%z—2)?
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Cc?+D? 1
AB— —— =5 +y+2)’(z -9y —2)"(z —2)",
CD—B*=ayz(x +y+2)(2* +y* + 22 — 2y — yz — z2)%
0

Remarkl. We obtained the identitd B = C? — C'D + D? in the following way.
For3(r + 1) = p* + pq + ¢%, by Theoren?.1we have

A+(1+r)B—pC —¢qD >0,
which is equivalent to
Bp® 4+ (Bq — 3C)p+ Bq® —3Dq + 3A > 0.

Since this inequality holds for any real and B > 0, the discriminant of the
guadratic ofp is non-positive; that is

(Bq — 3C)? — 4B(B¢?* — 3Dq + 3A) <0,
which is equivalent to
B%*¢* + 2B(C — 2D)q + 4AB — 3C* > 0.
Similarly, the discriminant of the quadratic @is non-positive; that is
B*(C —2D)* — B*(4AB — 3C?) <0,

which yieldsAB > C? — CD + D?. Actually, this inequality is an identity.
Remark2. The inequalityC’D > B? is true if

K2C —2kB+ D >0
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for any realk. This inequality is equivalent to

> oy —ky) > (k—1)%2yz Y,

which follows immediately from the Cauchy-Schwarz inequality

(Z x) [Z yz(x — ky)Q] > (k —1)*wyz (Z x>2 :

On the other hand, assuming that min{x, y, z} and substitutingg = = + p and
2 = x + q, wherep, ¢ > 0, the inequalityC’D > B? can be rewritten as

Azt 4+ Bya® + Cia® + Dz > 0,
with
Ay =3 —pg+¢°)* =0,
By =4(p+q)(p* —pq+¢°)* >0,
Cr = 2pq(p” = pa + ¢*)* +pa(* — ¢*)° + (0° + ¢*)° = 20°* (P> + ¢*) + 5p°¢* > 0,
Dy = pqlp° +¢° — pa(p® + ¢*) + P’ (p + q)] = 0.
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