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ABSTRACT. We investigate the notion of ‘best possible inequality’ in the context of Andersson’s
Inequality.
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Andersson[1] proved that if for ea@'hfz(O) =0 andfz- is convex and increasing, then

® /Hﬁ 2

with equality when eaclf; is linear.
Elsewhere[[2] we have proved thatff € M = {f|f(0) = 0and’2 is increasing and
bounded and
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then
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One notices that iff is convex and increasing witfi(0) = 0 then f € M. For M =
fo (xt)dt whenf’ exists. The question arises if in fact Andersson’s inequality can be extended
beyond @2)
Lemma 1 (Andersson) If fl( ) =0, increasing and convex,= 1,2 and f; = asz whereas
is chosen so thaﬁ) fo= fo I thenf0 fifs > fo fifs.
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2 A.M. FINK

We will examine whether Andersson’s Lemma is best possible. We now discuss the notion
of best possible.

An (integral) inequality (f, du) > 0 is best possible if the following situation holds. We
consider both the functions and measures as ‘variables’. Let the functions be in some universe
U usually consisting of continuous functions and the ‘Mmeasures in some universaially
regular Borel measures. ‘Suppose we can fihd U andM c U so that[(f, du) > 0 for all
fe Mifandonly if u € M (given thaty € U) and](f du) > 0forall u e M if and only if
f € M (given thatf € U). We then say the paii\/, M) give us a best possible inequality.

As an historical example, Chebyshev [3] in 1882 submitted a paper in which he proved that

) /  f@)g(@)pla)da / pa)de > / ' fe)pe)de / ’ g(@)ple)de

provided thatp > 0 and f andg were monotone in the same sense. Even before this paper
appeared in 1883, it was shown to be not best possible since thefpaiisr which (3) holds
can be expanded. Consider the identity

s [ [ 0@ - o) - swiw@pwasas = [ sov [ [0 [

So (3) holds iff andg are similarly ordered, i.e.
(5) [f(@) = f)llg(x) — g(y)] > 0, z,y € [a,b].

For exampler? andz* are similarly ordered but not monotone.
Jodeit and Fink[[4] invented the notion of ‘best possible’ in a manuscript circulated in 1975
and published in parts in[3] and/[4]. They showed that if we télk® be pairs of continuous

functions and’ to be regular Borel measurgswith f dup > 0, then

(6) /abfgdu/abduz/abfdu/abgdu

is a best possible inequality i/, = {(f, ¢)| (8) holds C U andM; = {p|p >0} i.e.
holds for all pairs inM/; if and only if . € M,, and
holds for all, € ]\//.71 if and only if (f, g) € M.
The sufficiency in both cases is the identity correspondingfto (4yul&= d, + J, where
z andy € [a,b], the inequality[() gived (5), and if = g = x4, A C [a,b], then [§) is
w(A)u(a,b) > p(A)? which givesu(A) > 0. Strictly speaking this pair is not if/;, but can
be approximated i, by continous functions.
If we return to Chebyshev’s hypothesis thfahndg are monotone in the same sense, let us
take U be the class of pairs of continuous functions, neither of which is a constarit @sd
above, M, = {f,g € U| f andg are simularly monotorjeand

t b
Mgz{,u/duZO,/duZOforagtgb}.
a t

Lemma 2. The inequality) holds for allf, g) € M, if and only if . € M.

Proof. There exist measurek andd\ such thatf(z) = [ dr andg(z) = [ d\. We may
assumef(0) = ¢(0) since adding a constant to a functlon does not a@er (6). Letting- 0 if

J. Inequal. Pure and Appl. Math4(3) Art. 54, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ANDERSSONS INEQUALITY AND BESTPOSSIBLEINEQUALITIES 3

x < 0and1ifx > 0 we can rewrite[(6) after an interchange of order of integration as

o [ [ oo | [ a [ w0t

- [ = thante) [ santo) 2o

Since f, g are arbitrary increasing functiongA anddr > 0 so (6) holds if and only if the
[ ] > 0 for eacht ands. For example we may take both these measuigsi\ to be point
atoms. The equivalent condition then is that

1 1 1 1
® /du/ dﬂz/du/ .
0 tVs t s

By symmetry we may assume that> s so that ) may be writterf; du ftl dp > 0. Conse-

quently, ifdy € M, @) holds and) holds for alf, g € M, only if [ du ftl dp > 0. But
for s = t this is the product of two numbers whose sum is positive so each factor must be
non-negative, completing the proof. O

Lemma 3. Supposef and g are bounded integrable functions ¢t 1]. If (6) holds for all
1 € My then f and g are both monotone in the same sense.

Proof. First letdu = 4, + 6, whered, is an atom at. Then [6) become (z) — f(y)][g(z) —

g(y)] > 0, i.e. f andg are similarly ordered. It < y < z, takedr = ¢, — 0, + 0, SO
thaty € M,. To ease the burden of notation let the valueg @t =, y, z be a, b, ¢ and the
corresponding values gfbe A, B, C. By (6) we have

9 aA—bB+cC>(a—b+c)(A—B+0O).

By similar ordering we have

(10) (a—b)(A—B)>0, (a—c)(A—=C) >0, and(b—c)(B—C) > 0;
and [9) may be rewritten as

(11) (a—0b)(C—B)+ (c—b)(A—B) <0.

Now if one of the two terms in (10) is positive, the other is negative and all the factors are
non-zero. By|[(I]0) the two terms are the same sign. Thus

(12) (a—b)(C — B) < 0and(c — b)(A— B) < 0.

Now (I0) and[(IPR) hold for any triple. We will show that ffis not monotone, then is a
constant.

We say that we have configuration ldf< b andc < b, and configuration Il ifa > b and
c>b.

We claim that for both configurations | and Il we must halve- B = C. Take configuration
l. Now b — a > 0 implies thatB — A > 0 by (10) andC — B > 0 by (13). Alsob —c¢ > 0
yields (B — C') > 0 by (10) andA — B > 0 by (12). Combining these we have= B = C'.
The proof for configuration Il is the same. O

Assume now that configuration | exists, do= B = C. Letz < xyp < y. Ifag < b
(ap = f(x0)) thenzy, y, z form a configuration | andly = B. If ag > b, thenzx, zy, z form a
configuration | and4y, = B. If 2y < x anday < b, then againeg, y, z form a configuration |
andAy = B. Finally if ag > b andx, < x thenz, x, b for a configuration Il anddy = B. Thus
for z <y g(0) = g(y). The proof forz > y is similar yielding that is a constant.
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If a configuration Il exists, then the proof is similar, or alternately we can apply the configu-
ration | argument to the pair f, —g.

Finally if f is not monotone oif0, 1] then either a configuration | or Il must exist ands a
constant. Consequently, if neithginor g are constants, then both are monotone and by similar
ordering, monotone in the same sense.

Note that if one off, g is a constant, thefi|(6) is an identity for any measure.

Theorem 4.

i) Let M be defined as above and = {¢|¢g(0) = 0 andg is increasing and boundéd
Then forF(z) = &

(13) /0 1 fgdo(z) > ( / 1 xda(x)) h ( /O 1 F(:L‘)xda) ( /U 1 g(:p)xda(x))

holds for all pairs(f,g) € M x N if and only ifdo € M.
i) Let f(0) = (0) = 0 and £ and g be of bounded variation oft), 1]. If (13 .) holds

for all do € M then eltherf or g is a constant (in which cas@13) is an identity) or
(£,9) e M x N.

The proof starts with the observation tHat|(13) is in fact a Chebyshev inequality

(14) /ﬁww/m>/pm/gm

wheredr = x do; and F', g are the functions. The theorem is a corollary of the two lemmas.
Andersson’s inequality {2) now follows by induction, replacing ghley f* at a time. Note
that the case = 2 of Andersson’s inequality {2) has the proof

/Olflfgz/olf{‘faz/olfffé‘

and itis only the first one which is best possible! The inequality between the extremes is perhaps
‘best possible’.

Remark 5. Of courser can be replaced by any function that is zero at zero and positive else-
where, i.e.@ can be replaced bﬁ% and the measurér = p(z)do(z).
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