

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 3, Article 54, 2003

ANDERSSON'S INEQUALITY AND BEST POSSIBLE INEQUALITIES

A.M. FINK

MATHEMATICS DEPARTMENT IOWA STATE UNIVERSITY AMES, IA 50011

fink@math.iastate.edu

Received 08 October, 2002; accepted 01 May, 2003 Communicated by D. Hinton

ABSTRACT. We investigate the notion of 'best possible inequality' in the context of Andersson's Inequality.

Key words and phrases: Convex, Best possible inequality.

2000 Mathematics Subject Classification. 26A51, 26D15.

Andersson [1] proved that if for each i, $f_i(0) = 0$ and f_i is convex and increasing, then

(1)
$$\int_0^1 \prod_{i=1}^n f_i(x) dx \ge \frac{2^n}{n+1} \prod_{i=1}^n \int_0^1 f_i(x) dx$$

with equality when each f_i is linear.

Elsewhere [2] we have proved that if $f_i \in M = \{f | f(0) = 0 \text{ and } \frac{f(x)}{x} \text{ is increasing and bounded} \}$ and

$$d\sigma \in \widehat{M} = \left\{ d\sigma \left| \int_0^t x d\sigma(x) \ge 0, \ \int_t^1 x d\sigma(x) \ge 0 \text{ for } t \in [0,1], \text{ and } \int_0^1 x d\sigma(x) > 0 \right. \right\}$$

then

(2)
$$\int_0^1 \prod_1^n f_i(x) d\sigma(x) \ge \frac{\int_0^1 x^n d\sigma(x)}{\left(\int_0^1 x d\sigma(x)\right)^n} \prod_1^n \int_0^1 f_i(x) d\sigma(x).$$

One notices that if f is convex and increasing with f(0) = 0 then $f \in M$. For $\frac{f(x)}{x} = \int_0^1 f'(xt)dt$ when f' exists. The question arises if in fact Andersson's inequality can be extended beyond (2).

Lemma 1 (Andersson). If $f_i(0) = 0$, increasing and convex, i = 1, 2 and $f_2^* = \alpha_2 x$ where α_2 is chosen so that $\int_0^1 f_2 = \int_0^1 f_2^*$ then $\int_0^1 f_1 f_2 \ge \int_0^1 f_1 f_2^*$.

ISSN (electronic): 1443-5756

© 2003 Victoria University. All rights reserved.

2 A.M. FINK

We will examine whether Andersson's Lemma is best possible. We now discuss the notion of best possible.

An (integral) inequality $I(f,d\mu) \geq 0$ is best possible if the following situation holds. We consider both the functions and measures as 'variables'. Let the functions be in some universe U usually consisting of continuous functions and the measures in some universe \widehat{U} , usually regular Borel measures. Suppose we can find $M \subset U$ and $\widehat{M} \subset \widehat{U}$ so that $I(f,d\mu) \geq 0$ for all $f \in M$ if and only if $f \in M$ (given that $f \in M$) and $f \in M$ (given that $f \in M$). We then say the pair $f \in M$ give us a best possible inequality.

As an historical example, Chebyshev [3] in 1882 submitted a paper in which he proved that

(3)
$$\int_a^b f(x)g(x)p(x)dx \int_a^b p(x)dx \ge \int_a^b f(x)p(x)dx \int_a^b g(x)p(x)dx$$

provided that $p \ge 0$ and f and g were monotone in the same sense. Even before this paper appeared in 1883, it was shown to be not best possible since the pairs f, g for which (3) holds can be expanded. Consider the identity

(4)
$$\frac{1}{2} \int_{a}^{b} \int_{a}^{b} (f(x) - f(y))[g(x) - g(y)]p(x)p(y)dxdy = \int_{a}^{b} fgp \int_{a}^{b} p - \int_{a}^{b} fp \int_{a}^{b} gp.$$

So (3) holds if f and g are similarly ordered, i.e.

(5)
$$[f(x) - f(y)][g(x) - g(y)] \ge 0, \ x, y \in [a, b].$$

For example x^2 and x^4 are similarly ordered but not monotone.

Jodeit and Fink [4] invented the notion of 'best possible' in a manuscript circulated in 1975 and published in parts in [3] and [4]. They showed that if we take U to be pairs of continuous functions and \widehat{U} to be regular Borel measures μ with $\int_a^b d\mu > 0$, then

(6)
$$\int_a^b fg \, d\mu \int_a^b d\mu \ge \int_a^b f \, d\mu \int_a^b g \, d\mu$$

is a best possible inequality if $M_1=\{(f,g)|\ \text{(5) holds}\}\subset U$ and $\widehat{M}_1=\{\mu|\mu\geq 0\}$ i.e.

- (6) holds for all pairs in M_1 if and only if $\mu \in \widehat{M}_1$, and
- (6) holds for all $\mu \in M_1$ if and only if $(f, g) \in M_1$.

The sufficiency in both cases is the identity corresponding to (4). If $d\mu = \delta_x + \delta_y$ where x and $y \in [a,b]$, the inequality (6) gives (5), and if $f=g=x_A, A \subset [a,b]$, then (6) is $\mu(A)\mu(a,b) \geq \mu(A)^2$ which gives $\mu(A) \geq 0$. Strictly speaking this pair is not in M_1 , but can be approximated in L_1 by continous functions.

If we return to Chebyshev's hypothesis that f and g are monotone in the same sense, let us take U be the class of pairs of continuous functions, neither of which is a constant and \widehat{U} as above, $M_0 = \{f, g \in U | f \text{ and } g \text{ are simularly monotone} \}$ and

$$\widehat{M}_0 = \left\{ \mu \left| \int_a^t d\mu \ge 0, \int_t^b d\mu \ge 0 \text{ for } a \le t \le b \right. \right\}.$$

Lemma 2. The inequality (6) holds for all $(f,g) \in M_0$ if and only if $\mu \in \widehat{M}_0$.

Proof. There exist measures $d\tau$ and $d\lambda$ such that $f(x) = \int_0^x d\tau$ and $g(x) = \int_0^x d\lambda$. We may assume f(0) = g(0) since adding a constant to a function does not alter (6). Letting $x_+^0 = 0$ if

 $x \le 0$ and 1 if x > 0 we can rewrite (6) after an interchange of order of integration as

(7)
$$\int_0^1 \int_0^1 d\lambda(s) d\tau(t) \left[\int_0^1 d\mu \int_0^1 (x-t)_+^0 (x-s)_+^0 d\mu(x) - \int_0^1 (x-t)_+^0 d\mu(x) \int_0^1 (x-s)_+^0 d\mu(x) \right] \ge 0.$$

Since f,g are arbitrary increasing functions, $d\lambda$ and $d\tau \geq 0$ so (6) holds if and only if the $[] \geq 0$ for each t and s. For example we may take both these measures, $d\tau, d\lambda$ to be point atoms. The equivalent condition then is that

(8)
$$\int_0^1 d\mu \int_{t \vee s}^1 d\mu \ge \int_t^1 d\mu \int_s^1 d\mu.$$

By symmetry we may assume that $t \geq s$ so that (8) may be written $\int_0^s d\mu \int_t^1 d\mu \geq 0$. Consequently, if $d\mu \in \widehat{M}_0$ (6) holds and (6) holds for all $f,g \in M_0$ only if $\int_0^s d\mu \int_t^1 d\mu \geq 0$. But for s=t this is the product of two numbers whose sum is positive so each factor must be non-negative, completing the proof.

Lemma 3. Suppose f and g are bounded integrable functions on [0,1]. If (6) holds for all $\mu \in \widehat{M}_0$ then f and g are both monotone in the same sense.

Proof. First let $d\mu = \delta_x + \delta_y$ where δ_x is an atom at x. Then (6) becomes $[f(x) - f(y)][g(x) - g(y)] \ge 0$, i.e. f and g are similarly ordered. If x < y < z, take $d\tau = \delta_x - \delta_y + \delta_z$ so that $\mu \in M_0$. To ease the burden of notation let the values of f at x, y, z be a, b, c and the corresponding values of g be A, B, C. By (6) we have

(9)
$$aA - bB + cC \ge (a - b + c)(A - B + C).$$

By similar ordering we have

(10)
$$(a-b)(A-B) \ge 0, (a-c)(A-C) \ge 0, \text{ and } (b-c)(B-C) \ge 0;$$

and (9) may be rewritten as

(11)
$$(a-b)(C-B) + (c-b)(A-B) \le 0.$$

Now if one of the two terms in (10) is positive, the other is negative and all the factors are non-zero. By (10) the two terms are the same sign. Thus

$$(a-b)(C-B) \le 0 \text{ and } (c-b)(A-B) \le 0.$$

Now (10) and (12) hold for any triple. We will show that if f is not monotone, then g is a constant.

We say that we have configuration I if a < b and c < b, and configuration II if a > b and c > b.

We claim that for both configurations I and II we must have A=B=C. Take configuration I. Now b-a>0 implies that $B-A\geq 0$ by (10) and $C-B\geq 0$ by (12). Also b-c>0 yields $(B-C)\geq 0$ by (10) and $A-B\geq 0$ by (12). Combining these we have A=B=C. The proof for configuration II is the same.

Assume now that configuration I exists, so A = B = C. Let $x < x_0 < y$. If $a_0 < b$ $(a_0 = f(x_0))$ then x_0, y, z form a configuration I and $A_0 = B$. If $a_0 \ge b$, then x, x_0, z form a configuration I and $A_0 = B$. If $x_0 < x$ and $a_0 < b$, then again x_0, y, z form a configuration I and $A_0 = B$. Finally if $a_0 \ge b$ and $a_0 < x$ then $a_0 < x$ for a configuration II and $a_0 = B$. Thus for $a_0 < x$ for $a_0 < x$ is similarly yielding that $a_0 < x$ is a constant.

4 A.M. FINK

If a configuration II exists, then the proof is similar, or alternately we can apply the configuration I argument to the pair -f, -g.

Finally if f is not monotone on [0,1] then either a configuration I or II must exist and g is a constant. Consequently, if neither f nor g are constants, then both are monotone and by similar ordering, monotone in the same sense.

Note that if one of f, q is a constant, then (6) is an identity for any measure.

Theorem 4.

i) Let M be defined as above and $N = \{g|g(0) = 0 \text{ and } g \text{ is increasing and bounded}\}$. Then for $F(x) \equiv \frac{f(x)}{x}$

(13)
$$\int_0^1 fgd\sigma(x) \ge \left(\int_0^1 xd\sigma(x)\right)^{-1} \left(\int_0^1 F(x)xd\sigma\right) \left(\int_0^1 g(x)xd\sigma(x)\right)$$

holds for all pairs $(f,g) \in M \times N$ if and only if $d\sigma \in \widehat{M}$.

ii) Let f(0) = g(0) = 0 and $\frac{f}{x}$ and g be of bounded variation on [0,1]. If (13) holds for all $d\sigma \in \widehat{M}$ then either $\frac{f}{x}$ or g is a constant (in which case (13) is an identity) or $(\frac{f}{x}, g) \in M \times N$.

The proof starts with the observation that (13) is in fact a Chebyshev inequality

(14)
$$\int_{0}^{1} Fg \, d\tau \int_{0}^{1} d\tau \ge \int_{0}^{1} F \, d\tau \int_{0}^{1} g \, d\tau$$

where $d\tau = x \ d\sigma$; and F, g are the functions. The theorem is a corollary of the two lemmas.

Andersson's inequality (2) now follows by induction, replacing one f by f^* at a time. Note that the case n=2 of Andersson's inequality (2) has the proof

$$\int_0^1 f_1 f_2 \ge \int_0^1 f_1^* f_2 \ge \int_0^1 f_1^* f_2^*$$

and it is only the first one which is best possible! The inequality between the extremes is perhaps 'best possible'.

Remark 5. Of course x can be replaced by any function that is zero at zero and positive elsewhere, i.e. $\frac{f(x)}{x}$ can be replaced by $\frac{f(x)}{p(x)}$ and the measure $d\tau = p(x)d\sigma(x)$.

REFERENCES

- [1] B.J. ANDERSSON, An inequality for convex functions, Nordisk Mat. Tidsk, 6 (1958), 25–26.
- [2] A.M. FINK, Andersson's inequality, Math Ineq. and Applic., to appear.
- [3] P.L. ČEBYŠEV, O priblizennyh vyraženijah odnih integralov čerez drugie. Soobščenija i Protokoly Zasedamii Matematišeskogo Obšestva pri Imperatorskom Har'kovskom Universite, **2** (1882), 93–98, Polnoe Sobranie Sočinenii P.L. Čebyševa. Moskva, Leningrad 1948, pp. 128–131.
- [4] A.M. FINK AND M. JODEIT, Jr., On Čhebyšhev's other inequality, 1984. *Inequalities in Statistics and Probability* (Lecture Notes IMS No. 5) Inst. Math. Statist. Hayward Calif., 115–129.
- [5] A.M. FINK, Toward a theory of best possible inequalities, *Nieuw Archief Voor Wiskunde*, **12** (1994), 19–29.