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ABSTRACT. Let M be a positive integer witi/ > 4, and lety* denote the unitary analogue

of Euler’s totient functionp. Using Grytczuk-Wéjtowicz’s techniques from the paper [2] we
strengthen considerably the lower estimations of the solution$ the equationM ¢*(n) =

n — 1. Moreover, we show that the set of positive integers, which do not fulfil this equation for
any M > 2, contains an interesting subset generated by Ramsey’s theorem.
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1. INTRODUCTION

Throughout this papéX denotes the set of positive integers, and the numhérs € N are
fixed with M > 2. Let ¢ be the Euler’s totient function, and let (n) be the number of all
natural numberg < n such thatk, n)* = 1, where(k, n)* is the greatest divisat of k£, which
is also aunitary divisor ofrn. (i.e., such thatd, n/d) = 1).

A classical (and still unsolved) problem proposed by Lehmer concerns the existence of a
composite numbet which fulfils the equation

(1.2) Mep(n)=n—1

(see e.g.[[3, p. 212-215]). Subbarao, Siva Rama Prasad and Dixit studiedlin [4, 5] an analogous
equation for the functiop*:

(1.2) Me*(n) =n—1.

Let

(13) n:p?1~p32.....p?T

be the prime factorization of, wherep; < ps < --- < p, anday, ..., a, € N. Putw(n) = r.

It is known (and easy to verify), that every solutiorof the equation[(1]1), must be odd and
squarefree. Moreover, since forof the form [1.8) we have

e (n) =" —1)-(pp> =1) -+~ (pym —1)
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(seel[4]),no solutionn of the equation (1]2) can be the power of a prime number
PutS;, .= {n € N: My*(n) = n — 1}, andS* = |J,,~, Sy;- In the papers [4,]5] the
authors obtained the following estimationsof S*: B

(1.4) n < (r—2.3)%"" wherer = w(n),

(1.5) if 3t n, thenw(n) > 11if 5|n, and w(n) > 17if 51 n,
(1.6) w(n) > 1850 when 3|n,

1.7) w(n) > 17 when the number 455 is not a unitary divisor of n,
(1.8) w(n) > 33 for M = 3,4 or 5.

In this paper, we show that the techniqueslof [2] allow us to obtain lower estimations for the
elements ofS;,, whereM > 4, which are considerably stronger than cited in(1.5) 4(1.8) and
unconditional

Our main result reads as follows.

Theorem 1.1.Let M > 4 and letn € S;, be of the forn{1.3).

(a) If py = 3, thenw(n) > 3049M/* — 1509.
(b) If py > 3, thenw(n) > 143M/4 — 1,

Thus, forn € S3;, whereM > 4, we have (in general)o(n) > 1540 when3|n (for M = 4
this result is slightly weaker thah (1.6)), andn) > 142 when3 t n (for M = 4 this result is
stronger thar (1]8)). Moreover,

e w(n) > 21147 when3|n, andw(n) > 493 when3 { n — for M = 5;
e w(n) > 166849 when3|n, andw(n) > 1709 when3 { n — for M = 6; and
e w(n) > 1249543 when3|n, andw(n) > 5912 when3 { n — for M > 7.

Further, by an argument similar to that of [2, Proof of corollary], we obtain

Corollary 1.2. LetM > 4, and letn € S;, be of the form(1.3)).

(a) If py = 3, thenn > (cM6™)%", wherec = 0.597... = 58,

(b) If p > 3, thenn > (dM3M)3", whered = 0.366... = "%

Using estimation(1]4) we obtain the following analogue of [2, Theorem 2].
Theorem 1.3.LetP = {P,, P, ... }, whereP, < P,,, forall : > 1, denote the set of all prime
numbers. For every integér > 2 there exists an infinite subsP{ k) of the setP such that

(a) for every pairwise distinct primeg,, ps,...,pr € P(k) anday, as, ..., o € N the
numbern = p}'p3?ps? - - - pp* does not fulfil equationl.2));
(b) P(k) is maximal with respect to inclusion.

(Notice that, by the general inequalityfn) > 11 (see(l1.4))), we haveP(k) = P for k < 10.)
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2. PROOFS

Proof of Theorer 1]1We give here only an outline of the proof of Theorem 1.1, in which we
essentially use the technique used in the proofiof [2, Theorem 1].

Let n be of the form|(1.3), and let’ be the squarefree kernelofi.e.,n’ = p; -pa -+« - p,.
Notice first that
(2.1) pln) “0(7}/).

n n

The first step of the proof of [2, Theorem 1] is the inequalit¥ M < n/p(n) for n odd and
squarefreer{ = n’). An exact analysis of this proof shows that, by equality|(2.1) the following
result is true:

Lemma 2.1. Let M > 4 be an integer, let be of the forn1.3)) with p; > 3, and suppose that
n

(2.2) M < W

Then
(a) w(n) > 3049M/4 — 1509 if p; = 3 andp; = 5(mod 6) for 2 < j < w(n),
(b) w(n) > 143M/4 — 1if p; > 3.

Sincen € Sy, andM > 4, by equation[(1]2) and the forms of andy, we obtain:

r .
n %

pr(n) 1P -1

— - 1+ 1
_i:1 Pt =1

Di n n

L5 = 0 ~ ey

Therefore every element € S;, fulfils inequality (2.2).

Further, if3|n (i.e. p; = 3), then from(1.) and the form of*, we obtain thas { (p;” — 1),
whence3 { (p; — 1) for j > 2; thusp; = 5(mod 6). Now we can apply condition (a) of Lemma
[2.3, which finishes the proof of case (a) of our theorem.

Case (b) of our theorem follows from case (b) of Lenima 2.1. O

Proof of Theorer 1]3We will use here the idea and symbols used in the proofiof [2, Theorem
2]. Let|[N]* be the set of-element increasing sequence\pfwherek > 2.

Consider the functiorf : [N]* — {0,1} of the form f(iy,4s,...,ix) = 0 iff the number
P Py? - - - P* fulfils equation [(1.R) for somer, ..., oy € N.

By the Ramsey Theorem![1], there is an infinite sub&gt) of the setN such that

FINR)") = {0} or f(IN(k)]F) = {1}.
Respectively, there is an infinite subg(tk) of P such that

*) PPy P e ST forsome ai,...,a; €N,
or
**) PP Pyt ¢ St forall ag,...,an €N,
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for all pairwise distinct element8, , ..., P, € P(k). From inequality|(1.4) we obtain that, for
everyk > 2 the numberet{n € N : w(n) < k} is finite, and thus casg is impossible. Hence
case(f«x) takes place, which implies that the $&fk) fulfils condition (a) of Theorer 1]3.

The existence of a maximal (with respect to inclusion)78ét) follows from Kuratowski-
Zorn’s Lemma. 0
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