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ABSTRACT. In this paper we establish some results concerning the partial sums of meromorphic
p-valent starlike functions and meromorphicp-valent convex functions.
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1. I NTRODUCTION

Let
∑

(p) (p ∈ N = {1, 2, . . . }) denote the class of functions of the form

(1.1) f(z) =
1

zp
+

∞∑
k=1

ak+p−1z
k+p−1 (p ∈ N)

which are analytic andp−valent in the punctured discU∗ = {z : 0 < |z| < 1}. A functionf(z)
in

∑
(p) is said to belong to

∑∗(p, α), the class of meromorphicallyp-valent starlike functions
of orderα (0 ≤ α < p), if and only if

(1.2) −Re

{
zf ′(z)

f(z)

}
> α (0 ≤ α < p; z ∈ U = U∗ ∪ {0}).

A functionf(z) in
∑

(p) is said to belong to
∑

k(p, α) , the class ofp−valent convex functions
of orderα(0 ≤ α < p), if and only if

(1.3) −Re

{
1 +

zf ′′(z)

f ′(z)

}
> α (0 ≤ α < p; z ∈ U).
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2 M.K. AOUF AND H. SILVERMAN

It follows from (1.2) and(1.3) that

(1.4) f(z) ∈
∑

k
(p, α) ⇐⇒ −zf ′(z)

p
∈

∑∗
(p, α).

The classes
∑∗(p, α)and

∑
k(p, α) were studied by Kumar and Shukla [6]. A sufficient condi-

tion for a functionf(z) of the form (1.1) to be in
∑∗(p, α) is that

(1.5)
∞∑

k=1

(k + p− 1 + α) |ak+p−1| ≤ (p− α)

and to be in
∑

k(p, α) is that

(1.6)
∞∑

k=1

(
k + p− 1

p

)
(k + p− 1 + α) |ak+p−1| ≤ (p− α).

Further, we note that these sufficient conditions are also necessary for functions of the form
(1.1) with positive or negative coefficients (see [1], [2], [5], [9], [14] and [15]). Recently ,
Silverman [11] determined sharp lower bounds on the real part of the quotients between the
normalized starlike or convex functions and their sequences of partial sums. Also, Li and Owa
[7] obtained the sharp radius which for the normalized univalent functions inU , the partial sums
of the well known Libera integral operator [8] imply starlikeness. Further , for various other
interesting developments concerning partial sums of analytic univalent functions (see [3], [10],
[12], [13] and [16]).

Recently , Cho and Owa [4] have investigated the ratio of a function of the form (1.1) (with
p = 1) to its sequence of partial sumsfn(z) = 1

z
+

∑n
k=1 akz

k when the coefficients are suffi-
ciently small to satisfy either condition (1.5) or (1.6) withp = 1. Also Cho and Owa [4] have

determined sharp lower bounds forRe
{

f(z)
fn(z)

}
, Re

{
fn(z)
f(z)

}
, Re

{
f ′(z)
f ′n(z)

}
, andRe

{
f ′n(z)
f ′(z)

}
.

In this paper, applying methods used by Silverman [11] and Cho and Owa [4], we will inves-
tigate the ratio of a function of the form (1.1) to its sequence of partial sums

fn+p−1(z) =
1

zp
+

n+p−1∑
k=1

ak+p−1z
k+p−1

when the coefficients are sufficiently small to satisfy either condition(1.5) or (1.6). More pre-

cisely, we will determine sharp lower bounds forRe
{

f(z)
fn+p−1(z)

}
, Re

{
fn+p−1(z)

f(z)

}
, Re

{
f ′(z)

f ′n+p−1(z)

}
,

andRe
{

f ′n+p−1(z)

f ′(z)

}
.

In the sequel, we will make use of the well-known result thatRe
{

1+w(z)
1−w(z)

}
> 0 (z ∈ U) if

and only ifw(z) =
∑∞

k=1 ckz
k satisfies the inequality|w(z)| ≤ |z| . Unless otherwise stated,

we will assume thatf is of the form (1.1) and its sequence of partial sums is denoted by

fn+p−1(z) =
1

zp
+

n+p−1∑
k=1

ak+p−1z
k+p−1.

2. M AIN RESULTS

Theorem 2.1. If f of the form (1.1) satisfies condition(1.5), then

(2.1) Re

{
f(z)

fn+p−1(z)

}
≥ n + p− 1 + 2α

n + 2p− 1 + α
(z ∈ U).
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The result is sharp for everyn andp, with extremal function

(2.2) f(z) =
1

zp
+

p− α

n + 2p− 1 + α
zn+2p−1 (n ≥ 0; p ∈ N).

Proof. We may write

n + 2p− 1 + α

p− α

[
f(z)

fn+p−1(z)
− n + p− 1 + 2α

n + 2p− 1 + α

]

=
1 +

∑n+p−1
k=1 ak+p−1z

k+2p−1 +
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

1 +
∑n+p−1

k=1 ak+p−1zk+2p−1

=
1 + A(z)

1 + B(z)
.

Set 1+A(z)
1+B(z)

= 1+w(z)
1−w(z)

, so thatw(z) = A(z)−B(z)
2+A(z)+B(z)

. Then

w(z) =

(
n+2p−1+α

p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

2 + 2
∑n+p−1

k=1 ak+p−1zk+2p−1 +
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1zk+2p−1

and

|w(z)| ≤

(
n+2p−1+α

p−α

) ∑∞
k=n+p |ak+p−1|

2− 2
∑n+p−1

k=1 |ak+p−1| −
(

n+2p−1+α
p−α

) ∑∞
k=n+p |ak+p−1|

.

Now |w(z)| ≤ 1 if and only if

2

(
n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 2− 2

n+p−1∑
k=1

|ak+p−1| ,

which is equivalent to

(2.3)
n+p−1∑

k=1

|ak+p−1|+
(

n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 1.

It suffices to show that the left hand side of(2.3) is bounded above by
∑∞

k=1

(
k+p−1+α

p−α

)
|ak+p−1| ,

which is equivalent to

n+p−1∑
k=1

(
k + 2α− 1

p− α

)
|ak+p−1|+

∞∑
k=n+p

(
k − n− p

p− α

)
|ak+p−1| ≥ 0.

To see that the functionf given by(2.2) gives the sharp result, we observe forz = reπi/(n+3p−1)

that

f(z)

fn+p−1(z)
= 1 +

p− α

n + 2p− 1 + α
zn+3p−1 → 1− p− α

n + 2p− 1 + α

=
n + p− 1 + 2α

n + 2p− 1 + α
whenr → 1−.

Therefore we complete the proof of Theorem 2.1. �
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4 M.K. AOUF AND H. SILVERMAN

Theorem 2.2. If f of the form (1.1) satisfies condition (1.6), then

(2.4) Re

{
f(z)

fn+p−1(z)

}
≥ (n + 2p)(n + 2p− 2 + α) + (1− p)(1 + p− α)

(n + 2p− 1)(n + 2p− 1 + α)
(z ∈ U).

The result is sharp for everyn andp, with extremal function

(2.5) f(z) =
1

zp
+

p(p− α)

(n + 2p− 1)(n + 2p− 1 + α)
zn+2p−1 (n ≥ 0; p ∈ N).

Proof. We write

(n + 2p− 1)(n + 2p− 1 + α)

p(p− α)

×
[

f(z)

fn+p−1(z)
− (n + 2p)(n + 2p− 2 + α) + (1− p)(1 + p− α)

(n + 2p− 1)(n + 2p− 1 + α)

]
=

1 +
∑n+p−1

k=1 ak+p−1z
k+2p−1 + (n+2p−1)(n+2p−1+α)

p(p−α)

∑∞
k=n+p ak+p−1z

k+2p−1

1 +
∑n+p−1

k=1 ak+p−1zk+2p−1

=
1 + w(z)

1− w(z)
,

where

w(z) =

(n+2p−1)(n+2p−1+α)
p(p−α)

∑∞
k=n+p ak+p−1z

k+2p−1

2 + 2
∑n+p−1

k=1 ak+p−1zk+2p−1 + (n+2p−1)(n+2p−1+α)
p(p−α)

∑∞
k=n+p ak+p−1zk+2p−1

.

Now

|w(z)| ≤
(n+2p−1)(n+2p−1+α)

p(p−α)

∑∞
k=n+p |ak+p−1|

2− 2
∑n+p−1

k=1 |ak+p−1| − (n+2p−1)(n+2p−1+α)
p(p−α)

∑∞
k=n+p |ak+p−1|

≤ 1,

if

(2.6)
n+p−1∑

k=1

|ak+p−1|+
(n + 2p− 1)(n + 2p− 1 + α)

p(p− α)

∞∑
k=n+p

|ak+p−1| ≤ 1.

The left hand side of (2.6) is bounded above by
∞∑

k=1

(k + p− 1)(k + p− 1 + α)

p(p− α)
|ak+p−1|

if

1

p(p− α)

{
n+p−1∑

k=1

[(k + p− 1)(k + p− 1 + α)− p(p− α)] |ak+p−1|

+
∞∑

k=n+p

[(k + p− 1)(k + p− 1 + α)− (n + 2p− 1)(n + 2p− 1 + α)] |ak+p−1|

}
≥ 0,

and the proof is completed. �

We next determine bounds forRe
{

fn+p−1(z)

f(z)

}
.
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Theorem 2.3. (a) If f of the form(1.1) satisfies condition(1.5), then

(2.7) Re

{
fn+p−1(z)

f(z)

}
≥ n + 2p− 1 + α

n + 3p− 1
(z ∈ U).

(b) If f of the form(1.1) satisfies condition(1.6), then

(2.8) Re

{
fn+p−1)(z)

f(z)

}
≥ (n + 2p− 1)(n + 2p− 1 + α)

(n + 2p− 1)(n + 2p)− n(1− α) + (1− p)(1− p− α)
(z ∈ U).

Equalities hold in (a) and (b) for the functions given by(2.2) and(2.5), respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write

(n + 2p− 1)

(p− α)

[
fn+p−1)(z)

f(z)
− n + 2p− 1 + α

n + 3p− 1

]

=
1 +

∑n+p−1
k=1 ak+p−1z

k+2p−1 −
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

1 +
∑∞

k=1 ak+p−1zk+2p−1

=
1 + w(z)

1− w(z)
,

where

|w(z)| ≤

(
n+3p−1

p−α

) ∑∞
k=n+p |ak+p−1|

2− 2
∑n+p−1

k=1 |ak+p−1| −
(

n+p−1+2α
p−α

) ∑∞
k=n+p |ak+p−1|

≤ 1.

The last inequality is equivalent to

(2.9)
n+p−1∑

k=1

|ak+p−1|+
(

n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 1.

Since the left hand side of (2.9) is bounded above by
∑∞

k=1
(n+p−1+α)

(p−α)
|ak+p−1| , the proof is

completed. �

We next turn to ratios involving derivatives.

Theorem 2.4. If f of the form (1.1) satisfies condition (1.5), then

(2.10) Re

{
f ′(z)

f ′n+p−1(z)

}
≥ 2p(n + 2p− 1)− α(n + p− 1)

p(n + 2p− 1 + α)
(z ∈ U),

(2.11) Re

{
f ′n+p−1(z)

f ′(z)

}
≥ p(n + 2p− 1 + α)

α(n + 3p− 1)
(z ∈ U ; α 6= 0).

The extremal function for the case(2.10) is given by(2.2) and the extremal function for the case
(2.11) is given by(2.2) with α 6= 0.

The proof of Theorem 2.4 follows the pattern of those in Theorem 2.1 and (a) of Theorem
2.3 and so the details may be omitted.

Remark 2.5. Puttingp = 1 in Theorem 2.4, we obtain the following corollary:
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Corollary 2.6. If f of the form (1.1) (withp = 1) satisfies condition (1.5) (withp = 1), then

(2.12) Re

{
f ′(z)

f ′n(z)

}
≥ 2(n + 1)− αn

n + 1 + α
(z ∈ U),

(2.13) Re

{
f ′n(z)

f ′(z)

}
≥ n + 1 + α

α(n + 2)
(z ∈ U ; α 6= 0).

The extremal function for the case (2.12) is given by (2.2) (withp = 1) and the extremal function
for the case (2.13) is given by (2.2) (withp = 1 andα 6= 0).

Remark 2.7. We note that Corollary 2.6 corrects the result obtained by Cho and Owa [4, The-
orem 5].

Theorem 2.8. If f of the form(1.1) satisfies condition(1.6), then

(2.14) Re

{
f ′(z)

f ′n+p−1(z)

}
≥ n + p− 1 + 2α

n + 2p− 1 + α
(z ∈ U),

(2.15) Re

{
f ′n+p−1(z)

f ′(z)

}
≥ n + 2p− 1 + α

n + 3p− 1
(z ∈ U).

In both cases, the extremal function is given by(2.5).

Proof. It is well known thatf ∈
∑

k(p, α) ⇔ − zf ′(z)
p

∈
∑∗(p, α). In particular,f satisfies

condition (1.6) if and only if− zf ′(z)
p

satisfies condition (1.5). Thus, (2.14) is an immediate
consequence of Theorem 2.1 and (2.15) follows directly from Theorem 2.3(a). �

Remark 2.9. Puttingp = 1 in the above results we get the results obtained by Cho and Owa
[4].
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