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ABSTRACT. Given two positive real numbersandy, let A(z,y), G(z,y), andI(z,y) denote
their arithmetic mean, geometric mean, and identric mean, respectively. Ald6,(ety) =

(/%Ap(x,y) + $GP(2,y) for p > 0. In this note we prove thaki,(z,y) < I(z,y) for all

positive real numbers # y if and only if p < 6/5, and thatl (z, y) < K,(z,y) for all positive
real numbers: # y ifand only if p > (In3 — In2)/(1 — In 2). These results, complement and
extend similar inequalities due to J. Sandoar [2], J. Sandor and TLTrif [3], and H. Alzer and S.-L.

Qiu [].
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1. INTRODUCTION

In this note we consider several means of two positive real numbarsl y. Recall that
the arithmetic mean, the geometric mean and the identric mean are defind by = “1¥

Glz,y) = /& and .

1

I(z,y) = l(iz_)fy it z#y

x if z=y
We also introduce the family<,(z, y)),~o Of means of: andy, defined by

o] 24P (z,y) + GP(z,y

Ky fa.y) — {22 V)

Using the fact that, forv > 1, the functiont — ¢“ is strictly convex orR*, and that for

x # y we haveA(x,y) > G(z,y) we conclude that, for # y, the functionp — K,(z,y) is
increasing orR, .

In [3] it is proved that/ (z,y) < Ks(x,y) for all positive real numbers # y. Clearly this

implies that/ (z,y) < K,(z,y) for p > 2 andz # y which is the upper (and easy) inequality
of Theorem 1.2 ofi[4].
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On the other hand, J. Sandor proved(in [2] thét(z,y) < I(x,y) for all positive real
numberse # y, and this implies thak’,(x, y) < I(z,y) forp < 1 andz # y.

The aim of this note is to generalize the above-mentioned inequalities by determining exactly
the sets

L={p>0:V(z,y) € D, K,(x,y) <I(z,y)}
U={p>0:Y(z,y) €D, I(x,y) < Ky(z,y)}

with D = {(z,y) € R x R% : x # y}. Clearly,£ andl{ are intervals sincg — K,(z,y) is
increasing. And the stated results show that

(0,1} c £ C (0,2) and  [2,+00) CU C (1,+00).
The following theorem is the main result of this note.

Theorem 1.1.Let!/ and £ be as above, thefi = (0, po] andUf = [p;, +00) with

6 In3—1In2
=—-=1.2 and = ———— < 1.3214.
Po =% PL= e R

2. PRELIMINARIES
The following lemmas and corollary pave the way to the proof of Thegrem 1.1.
Lemma 2.1.For 1 < p < 2, leth be the function defined on the intervak= [1, +00) by
1— 20)p1—2/p
h(z) = (1—p+22)x

14+ (2—-p)z
(i) If p < S thenh(z) < 1forall z > 1.
(i) If p > & then there exists, in (1,+o0) such thath(z) > 1for1 < z < , and
h(z) < 1forz > x.

Proof. Clearlyh(z) > 0 for x > 1, so we will considet = In(h).

H(z) =1In(1—p+2z) + 2

Inz —In(1+ (2 —p)x).

Now, doing some algebra, we can reduce the derivativé a the following form,
2 2—p 2—p
:1—p—|—2x_ pr  1+(2-px
- 2(2 — p)’Q(x)
pr(l—p+22)(1+(2—p)x)’
with @ the second degree polynomial given by

-1 —-p) p—1
)= x2o @ X - .
AX) (2-p)? 4—2p
The key remark here is that, since the product of the zer@g isfnegative () must have two
real zeros; one of them (say ) is negative, and the other (say) is positive. In order to
comparez, to 1, we evaluat&)(1) to find that,
p—1d-p) p-1 _(6-5p)(3—p)

C=1-"5"0r “i-op= s@-pF

so we have two cases to consider:

H'(x)
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e If p < 5, thenQ(1) > 0, so we must have, < 1, and consequentl§)(z) > 0 for
x> 1. HenceH'(z) < 0forx > 1, andH is decreasing on the intervBlbut H (1) = 0,
so thatH (z) < 0 for x > 1, which is equivalent to (i).

o If p > £ thenQ(1) < 0 so we must havé < z., and consequentlyQ(z) < 0
for1 <z < zy andQ(x) > 0 for z > z,. therefored has the following table of

variations:

x 1 24 +00
H'(x) + 0 —
H(z) |0 / ~ N —oo

Hence, the equatioi (z) = 0 has a unique solutiom, which is greater than,, and
H(z)>0forl <z < xo, whereasd (z) < 0 for x > z,. This proves (ii).

The proof of Lemma 2]1 is now complete. O

Lemma 2.2. For 1 < p < 2, let f, be the function defined dk’, by

t 1 1 2cosh?t + 1
pr _— _—— n —_—
tanht P 3 ’

fo(®)

(i) If p < & thenf, is increasing orR?,..
@iy Ifp > g then there exists, in R* such thatf, is decreasing or0, ¢,], and increasing
ont,, +00).

Proof. First we note that

1 2sinh® ¢t
"(t) = ——— [ sinhtcosht —t —
Sp(1) h*¢ <Sm o (24 cosh™”t) cosht) ’

so if we define the functiop onR*_ by
2sinh®¢
(2 + cosh™t) cosht’

g(t) = sinhtcosht —t —

we find that
6 sinh” ¢ N 2sinh® £(2 + (1 — p) cosh ™ t)
2 +cosh™t¢ (2 + cosh™” )2 cosh® ¢
B 2tanh’¢ ((1+ (2 — p) cosh” t) cosh’ ¢t — (1 — p + 2 cosh” t) cosh” ¢t
(1 4+ 2cosh? t)?
_ 2sinh?¢ (1 + (2 — p) cosh” t) (1 (1 —=p+2cosh”t) cosh”t )
(1 + 2 cosh”t)? (1+ (2 — p) cosh” t) cosh? ¢
_ 2sinh?¢ (1 + (2 — p) cosh” t)
(1 4+ 2cosh”t)?
whererh is the function defined in Lemnja 2.1. This allows us to conclude, as follows:
o If p < &, then using Lemmp 2.1, we conclude thdtosh” ) < 1fort > 0, sog’

5!
is positive onR?.. Now, by the fact thay(0) = 0 and thaty is increasing orR’, we

conclude thay(t) is positive fort > 0, thereforef, is increasing orR*.. This proves
(i).

o If p> &, then using Lemmia 2.1, and the fact that cosh” ¢ defines an increasing bi-
jection fromR* onto(1, 4-00), we conclude thag has the following table of variations:

g'(t) =2sinh*¢ —

(1 — h(cosh?t))

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 71, 6 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 OMRAN KouUBA

t o to +00
q'(t) - 0 +
g(t) [0\, — /" 4o

with t, = arg cosh ¢/zy. Hence, the equatiof(t) = 0 has a unique positive solutiap,
andg(t) < 0for0 < t < t,, whereag(t) > 0 for ¢ > t,, and (ii) follows.

This achieves the proof of Lemra P.2. O

Now, using the fact that

t—0 t—oo e

lim f,(t) =0 and lim f,(t) =1n (g ( g) ,

the following corollary follows.

Corollary 2.3. For 1 < p < 2, let f, be the function defined in Lemina]2.2.
M Ifp< g, then f, has the following table of variations:

t 0 +00
Bt o m(2¢3)

@) Ifp> g then f, has the following table of variations:

t 0 400
Lo oo = m(23)

In particular, for1 < p < 2, we have proved the following statements.

(2.1) (Vt >0, fp(t) > 0) <= p < po,
(2.2) (Vt>0, f,(t) <0) <=1In (%{/g) <O0<=p>m

wherep, andp, are defined in the statement of Theofem 1.1.

3. PROOF OF THEOREM

Proof. In what follows, we use the notation of the preceding corollary.
e First, consider somgin £, then for all(z,y) in D we haveK,(z,y) < I(z,y). This
implies that
Vi>0. In(K,(e'e™)) <In(l(e'e™)),

but(e',e™") = exp (=t — 1) andA(e', e ") = cosht, so we have

t 1 2 hP¢t+1
Vi >0, RS MY e )
tanht P 3

Now, if p > 1, this proves thaf,,(¢) > 0 for every positivet, so we deduce fron (2.1)
thatp < po. Hencel C (0, po).
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max(.y)

e Conversely, consider a paifr,y) from D, and definet as ln( N ) Now, us-

ing (2.1) we conclude thaf,,(t) > 0, and this is equivalent t&,, (z,y) < I(z,y).
Therefore,p, € £ and consequently0, po] C £. This achieves the proof of the first
equality, that isC = (0, po).

e Second, consider somen U, then for all(z,y) in D we havel (z,y) < K,(x,y). This

implies that
Vi>0, In(K,(e'e™))>In(l(ee™)),

p
Vit >0, t —1—11n(—2COSh3t+1)<O,

so we have

tanht P

Now, if p < 2, this proves thaf,(¢) < 0 for every positivet, so we deduce fron@.Z)
thatp > p;. Henceld C [p1, ).

e Conversely, consider a pdir, ;) from D, and as before define= In (%) Now,

using [2.2) we obtairf,, (¢) < 0, and this is equivalent té(z,y) < K, (z,y). There-
fore, p; € U and consequentlip;,c0) C U. This achieves the proof of the second
equality, that ig/ = [p;, ).

This concludes the proof of the main Theorjem 1.1. O

4. REMARKS

Remark 1. The same approach, as in the proof of Thedrem 1.1 can be used to prove that for

3—A—+/(1=X)(3A+1)
A <2/3andp < EEsyEES,

YNAP(z,y) + (1 = NGP(x,y) < I(z,y)

for all positive real numbers # y. Similarly, we can also prove that for > 2/3 andp >

In A
m5-7We have

we have

for all positive real numbers # y. We leave the details to the interested reader.

Remark 2. The inequalityl (z,y) < \/§A2(x,y) + $G?(z,y) was proved in[[B] using power
series. Another proof can be found in [4] using the Gauss quadrature formula. It can also be
seen as a consequence of our main theorem. Here, we will show that this inequality can be
proved elementarily as a consequence of Jensen’s inequality.

Let us recall thain(/(x,y)) can be expressed as follows

In(I(z, y)) = /0 In(te + (1 — t)y) dt — /0 In((1 = ) + ty) dt.
Therefore,

2In(I(x,y)) = /0 In ((tz + (1 — t)y)((1 — t)z + ty)) dt,
but
(tz + (1= )y) (1 = )z +ty) = (1 — (2t = 1)) A*(z,y) + (2t = 1)°G*(=,y),
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so that, byu < 2t — 1, we obtain,

2In(I(z,y)) = %/_ In((1 — u*)A*(x,y) + v’ G*(z,y)) du

= /0 In((1 — u?)A%(z,y) + v*G*(x,y)) du.
Hence, )
I*(z,y) = exp (/0 In((1 — u?)A%(z,y) + u’G?(x,y)) du)

Now, the functiont +— ¢! is strictly convex, and the integrand is a continuous non-constant
function whenr # y, so using Jensen’s inequality we obtain

1
Play) < [ e (I~ ) 4(e,0) + 06(w,) du = £4%(w,y) + 56%(a,y).
0
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