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ABSTRACT. A delayed periodia:-species simple food-chain system with Holling type-II func-
tional response is investigated. By means of Gaines and Mawhin’s continuation theorem of
coincidence degree theory and by constructing appropriate Lyapunov functionals, sufficient con-
ditions are obtained for the existence and global attractivity of positive periodic solutions of the
system.
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1. INTRODUCION

The traditional Lotka-Volterra type predator-prey model with Michaelis-Menten or Holling
type Il functional response has received great attention from both theoretical and mathematical
biologists, and has been well studied (see, for example, [1]~ [12]). Up to now, most of the
works on Lotka-Volterra type predator-prey models with Michaelis-Menten or Holling type 1l
functional responses have dealt with autonomous population systems. The analysis of these
models has been centered around the coexistence of populations and the local and global stabil-
ity of equilibria. We note that any biological or environmental parameters are naturally subject
to fluctuation in time. As Cushing [13] pointed out, it is necessary and important to consider
models with periodic ecological parameters or perturbations which might be quite naturally
exposed (for example, those due to seasonal effects of weather, food supply, mating habits,
hunting or harvesting seasons, etc.). Thus, the assumption of periodicity of the parameters is a
way of incorporating the periodicity of the environment.
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2 QIMING LIU AND HAIYUN ZHOU

It has been widely argued and accepted that for various reasons, time delay should be taken
into consideration in modelling, we refer to the monographs of Cushing [14], Gopalsamy [15],
Kuang [16], and MacDonald [17] for general delayed biological systems and to Beretta and
Kuang [18], Gopalsamy [19, 20], He [21], Wang and Mal![22], and the references cited therein
for studies on delayed biological systems. In general, delay differential equations exhibit much
more complicated dynamics than ordinary differential equations since a time delay could cause
a stable equilibrium to become unstable and cause the population to fluctuate. Time delay due
to gestation is a common example, because generally the consumption of prey by the preda-
tor throughout its past history governs the present birth rate of the predator. Therefore, more
realistic models of population interactions should take into account the effect of time delays.

The main purpose of this paper is to discuss the combined effects of the periodicity of the
ecological and environmental parameters and time delays due to gestation and negative feed-
back on the dynamics of anrspecies food-chain model with Michaelis-Menten or Holling type
Il functional responses. To do so, we consider the following delay differential equations
( _ alg(t)IQ(t) :|

1+ miay (t)
a1zt — 755-1)
Lt mjaz;a(l - Tj,j(l)) "
j,j+1(8)T5+1(%
az;(t)x;(t — 7j5) 1+ myai2;(2)

in(t) = 2n(?) {—m(o + f:”;ﬁ);:ll((’;__T;:Z‘jl)) — (D) (t — Tm)} ,

l’l(t) = .Tl(t) |:7“1<t) — all(t)xl(t — 7'11)

(1) = 2,(1) [—m (t) +
(1.1)

1, 1<jg<n,

\

with initial conditions

(1.2) z;(s) = ¢;(s), s€[-7,0], ¢;(0)>0, j=1,2,...,n.
In system [(L.]1),z;(¢) denotes the density of thi¢h population, respectively, = 1,....n.
7;i-1(j = 2,...,n) are time delays due to gestation, that is, mature adult predators can only

contribute to the reproduction of predator biomass.> 0 denotes the delay due to negative
feedback of the species. 7 = max{7;,1 < i,j < n}; r;i(t),a;(t) (4,7 = 1,2,...,n) are
positively periodic continuous functions with common period- 0 andm;(i = 1,2,...,n—1)
are positive constants.

It is well known by the fundamental theory of functional differential equations$ [23] that
system[(1.]l) has a unique solutiof¥) = (z1,z,,...,x,) satisfying initial conditions|(1]2).

It is easy to verify that solutions of system (|1.1) corresponding to initial conditjons (1.2) are
defined on0, +00) and remain positive for all > 0. In this paper, the solution of system (1.1)
satisfying initial conditiong (1]2) is said to be positive.

The organization of this paper is as follows. In the next section, by using Gaines and
Mawhin’s continuation theorem of coincidence degree theory, sufficient conditions are estab-
lished for the existence of positive periodic solutions of systerm (1.1) with initial conditions
(1.7). In Section B, by constructing suitable Lyapunov functionals, sufficient conditions are
derived for the uniqueness and global attractivity of positive periodic solutions of systém (1.1).

2. EXISTENCE OF PERIODIC SOLUTIONS

In this section, by using Gaines and Mawhin’s continuation theorem of coincidence degree
theory, we show the existence of positive periodic solutions of sygtefn (1.1) with initial condi-
tions (1.2). In order to prove our existence result, we need the following notations.

Let X,Y be real Banach spaces, Iet: DomL C X — Y be a linear mapping, and
N : X — Y be a continuous mapping. The mappihgs called a Fredholm mapping of
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EXISTENCE AND GLOBAL ATTRACTIVITY OF PERIODIC SOLUTIONS 3

index zero ifdim Ker . = codimIm L. < 400 andIm L is closed inY. If L is a Fredholm
mapping of index zero and there exist continuous projectors X — X, and@ : Y —
Y such thatim P = Ker L, Ker@Q = Im L = Im(/ — @), then the restrictior.p of L to
Dom L NKerP : (I — P)X — Im L is invertible. Denote the inverse éfp by Kp. If Q is
an open bounded subset &f, the mappingV will be called L—compact o2 if QN(Q) is
bounded and<p(I — Q)N : Q — X is compact. Sincém Q is isomorphic toKer L, there
exists an isomorphisni : Im @) — Ker L.

For convenience of use, we introduce the continuation theorem of coincidence degree theory
(seel[24, p. 40]) as follows.

Lemma 2.1. LetQ2 C X be an open bounded set. Liebe a Fredholm mapping of index zero
and N be L-compact orf). Assume

(a) Foreach\ € (0,1),2 € 99N Dom L, Lx # ANz;
(b) Foreachz € 0Y N Ker L, QNx # 0;
(€) deg{JQN,QNKer L,0} # 0.

ThenLz = Nz has at least one solution 3N Dom L.

In what follows we shall also need the following notations:
N
= — t)dt L= min f(¢ M — ma t
P [ rwan gt = min @, 1M = ma f0)
wheref is a continuouss-periodic function.

Theorem 2.2. System[(1]1) with initial condition$ (1.2) has at least one strictly positive
periodic solution provided that

(H1) 1y > MTi, G > myaH, 2 < <,
— B
(H2) T O i
a1 — myHy
where
( J—
Kl _ a—w(cml/ml) — T2 62(a21/m1)w’ Hn =7,
a2
a-H.
(2.1) H; =K, + @jjHj+1 21w/ mj-1_ 2<j<n-—1,
Tjtig — M4
Kj =T+ aj,j+1aj+1’j — T mgeims 2 < j<n - 1.
mjaj
Proof. Let
(2.2) yi(t) = Infx; ()], i1=1,...,n.
On substituting[(2]2) into systern (1.1), it follows
( y2(t)
(1) = 11 (1) — ay (en @) _ @2(Be”?.
i(t) = ri(t) — an ()™ 1+ myen®’
() = A (et ) ey G (e
(2.3) g(t) = =r5(t) + 1+ m;_jevi—1(t-75-1) ajj(t)en 1+ mjevi)
' j=2,....n—1,
. o an,n—1<t)eyn_l(t77-n’n_1) Yn (t—Tnn)
\ Un(t) = —rp(t) + R ey Ann(t)e :
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4 QIMING LIU AND HAIYUN ZHOU

It is easy to see that if systein (R.3) has aneperiodic solution(y; (¢), ..., y:(t))?, then

2 (t) = (1(t), ..., 25 ()" = (explyi (D)), .. explyn ()"

is a positivew-periodic solution of systen (J.1). Therefore, to complete the proof, it suffices to
show that systeni (2.3) has oneperiodic solution.
Take

X=Y={(n(t),...,un(t)" € CR,R™) : y(t +w) = yi(t),i =1,...,n}

and
11 (8), - wn(®) "l =y max [y ()],
P €[0,w]
here| - | denotes.>°—norm.. It is easy to verify thak’ andY” are Banach spaces with the norm
| - || Set
dy, (t dy )\ "
L:DomLNX, Llpu(t),... ya(t)T = () dw®))
dt dt
whereDom L = {(y1(¢),...,y.(t))" € C*(R,R")} andN : X — X,
+)evz(t)
1 (t) - a11(t)ey1(t—‘m) _ %
mqedt
yi(t) '
P N N s AN PR R1 () Ll
N1 v (t) o ri(t) + 14 mj_leyj—1(t—ﬁ,j—1) ajj(t)e 1+ mjeyj(t)
yt) ()
— t Yn—1 n,n—1
—rn(t) + a , 1( )6 . ann(t)eyn(tf‘rnn)

]_ _I_ mn_leynfl(t_Tn,nfl)

Define two projectors’ and(@ as

I

ht Y1 Y1
I
Pluy |=Q| vy |= ;foyj(t)dt , y; | eX
Yn Yn 1 w. Yn
— (1) dt
= Jo wa(®)

It is clear that
KerL={z| € X, x=h, heR"},

ImL={y|l yev, / y(t)dt = 0} is closedinY,
0

and
dim KerL = codim ImL = n.

Therefore,L is a Fredholm mapping of index zero. It is easy to show thand() are contin-
uous projectors such that

ImP=KerL, Ker@=ImL=Imn(I-@Q).

J. Inequal. Pure and Appl. Math4(5) Art. 89, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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Furthermore, the invers&p of Lp exists and is given by : Im L — Dom L N Ker P,

Kp(y) = / @__/‘/ )dsdt.

Then@QN : X — YandKp(I — Q)N : X — X read

r 1 apa(t)er2®
— _ yi(t—ma) _ P12\0)FT 7
o /0 |:T'1 (t) au(t)e 1 T mleyl(t) dt

N I a1 (t)en I~ Ty wylt—my) _ Ggrr (et
@Nw = ;/0 {_Tj@) i 1 +mj—1eyj71(tffj,j—1) — ag(H)e T - 1 +mjeyj(t) dt |,

1 w Nr— t yn—l‘(t_Tn,n—l)
—/ {—rn(t) 4 A 1(t)e — G () ¥ (7T } dt
0

w 1 + mn_leyn—l(t*Tn,n—l)

p(I - QNa:—/Nx 3——//Nx dsdt—(———)/Nx

Clearly,QN and Kp(I — Q)N are continuous.
In order to apply Lemm@ 1, we need to search for an appropriate open, bounded subset
Corresponding to the operator equation= ANz, A € (0, 1), we obtain

| a (t)eyQ(t)
. — — ) (t—T ) i 12—
() = { ()= an(gn-ny - 2Dt
a1 (t)e¥i—1t=Tii-1)
1 - mj*leyj—l(t—Tj,j_l)
(t)@yj (t*Tjj) . a]7]+1 (t)eyj+1(t)

s 1+ myew®

P t ynfl(t_'rn,nfl)
yn(t>=A{—rn<t)+ ann1()e —am(weynw—w]

iy ()= [—m (0 +
(2.4)

},1<j<n,

\ 1 —'— mnileyn—l(t_Tn,n—l)

Suppose thaty (t), ..., y.(t))T € X is a solution of systen) (2.4) for somee (0, 1). Inte-
grating systend (2]4) ovéo, w| gives

w w t y2(t) w
(2.5) / ar (t)er =Tt + / (e / r1(t)dt,
0 0 0

14+ mien ®)

Yi—1(t—75,5-1)
(2.6) / aj-1(t)e dt

1—|—m] 1eYi-1 1(t=75,5-1)

@ g (el ®) w
:/ j(t)dt+/ 4g+1(t)e , dt+/ aj;(t)evi =i dt,
0 0 0

1+ mje¥i®)

U-’ w w N — t yn—l(thn,n—l)
(2.7) / r,(t)dt +/ A (1) eV )t = / ann-1(t)e 7 it
0 0 0

]_ + mn_leynfl(t Tn,nfl)
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It follows from (2.5)-(2.7) that

(2.8) [ titenae = [0

S/ |:7“1(t)—|-a11(t)6y1(t_7—11)+
0

A
= 27”1&) = d17

a12 (t)eyQ ®)
1+ mien ®)

T1 (t) — (le(t)eyl(tiﬁl) —

1+ mqeyt (t)

(2.9) i QI

:/0“

w aj i1 (t)eyi—1(t=Tig-1) g (e ®)
- /0 [T] )+ 1+ mj_qe¥i—1(t=T-1) +agg(£)e T + 1+ myev®) at

(t)eyj—l(t*Tj,j—l) a1 (t)eyj+1(t)

1+ m;eYi ®)

aj,j—-1

1+ mj_qe¥i—1(t=T5-1) at

—r;(t) + —ay; (t)eyj(t—Tjj) —

as; 5
<2l 2. =2 n—1,

m;—
1 _|_ mn_leyn—l (t*Tn,n—l)

@10 [l |
0 0
An.n—1 (t>€yn71(t_7—n’n71)

) y’”(t_Tnn)
< /0 [Tn(t) + TI———— + apne } dt

Qpn—1 A
< gfnn=l A
Mp—1

1 () e¥n =10 Tn 1) (t—Tnm)

—ry(t) + — A" dt

Since(yi(t),...,y.(t))" € X, there exists;, T; such that
ztlz i it, zﬂz ilf, ':1,...,.
yilti) = min yi(t), yi(Ti) = max yi(t), i n

We derive from[(Z2.p) that
/ ay (t)e "t < / ri(t)dt,
0 0

which implies

,r._
y1(t1) < In — 2 p1.
an
This, together with[(2]8), leads to
(2.11) n(®) <ne)+ [l
0

7/._
< In — + 2Fw.
ai

It follows from (2.6) and[(2]7) that

v @ g (1) eV (t=Ti-1)
/ ajj (t)eyj(t_Tjj)dt < / aj,j 1(t)e dt — Tw
0 0

1+ mjfleyj—l(t—Tj,j—l)

aj.j—1 _
< Loy — T;W,
m;—q
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which implies
Qjj—1 = Mj1Tj A

yi(t;) < In —= — = ;.
5 (t)) S,

This, together with[(2]8) anfl (2.9), leads to

(2.12) u(0) < (1, /|yj )| dt

a;i_q 1 — MMy 17" Aji—1
<In J,J— J— J+2 J5J

w, j=2,...,n.

mj-1G;; mj—1

From [2.%) and[(2.12) we obtain

1 w
(2.13) ae ™ > 5 — = aio (t)eyQ(t)dt
w
> 7 — a_(a21/m1) T_zezmw
- Q22
= ﬁ - K17
that is
— K
(2.14) (T >l 12
ary
It follows from (2.8) and[(2.14) that
- K _
(2.15) y1(t) >y (Th) / |g1(t)|dt > ln — 2Tw.
ay
We obtain from([(2J6) and (2.15) that
1 w a (t)eyl(t_TZI) 1 w
— y2(T2) _ 21 o (t)
(2.16) ageY > - /0 T mleyl(t—m)dt T = /0 ag3(t)e¥sdt
- K -
a—21< — 1)6—21”10.)
> “11 — Ky
- Kl __
1+ ml( Je— 2w
ayy
_ i (71 — lf) K,
CL11€2T1W + mq (7”1 — Kl)
2A - Ky
If Al — K5 > 0 then
A — K
(2.17) y2(Ty) > In ——2,
22
this, together with[(2]9), leads to
(2.18) 1o(t) > 1(T5) — / 2 (Dldt
0
In 21 _ o2
- (22 my
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It follows from (2.7) and[(2.18) that

1 [ asy(t)ev2(t=ms2) «
y3(Ts) > — 32 dt — 7= — / £ ® gy
ag3e T w /0 1+ m26y2(t—732) "3 0 a34( )6

T2(Ay — Kp)e /M) [,

Tl mdl (A — Ky)eXen/me fay
ax(A; — K») K
= — - 3
agpe2(@2t/m)w my (A — Ky)
SN, —
If A, — K3 > 0, together with[(2.9), it follows
Ay — K.
(2.19) y3(t) > In % — Q%w =y — Q%M
ass (%) my
Similarly, we have
(Ao — K1)
i (1)) ~ aj-1(A)-2 j=1 _K.
agze Z WeQ[m/mj_Q]w +mi (A, — K1) J
é Aj—l - Kj.
If A;,_; — K; >0, we have
(2.20 (1) = (T / (1)t
> SR
- ajj mj_1
2 0; pRac Lo,
mi;—1
where
i (A — K-
(2.21) A= Lf”( 1= K) , 3<j<n-—1.
ajie it +mi(Aj — K;)
From (2.T) and[(2.20), we have
T T > A, =T
If A,_1 —7, > 0, together with[(2.10), it follows that
(2.22) Yn(t) > yn(Th) / |9 (t)|dt
Z lIl N Zann 1
ann mp—1
a 5 _2a'nn 1
mMp—1
We note that[(2.75)] (2.18) £ (Z2]20) and (2.22) hold if the following are true:
(223) 7”_1>K1, AJ>KJ+1(j:1,2,,n—2), An,1 >m

We now show that assumptiors (H1) ahd(H2) imply (P.23).
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Let (HI) and[(H2) hold. Then we have

2w
CL11H2€ 1 . H
+ ==, G21 > Mo,
Q21 — M7

> K+
which implies
> Ky, A1 > Hs.
Noting thatas; — mors > 0, azy; — moHs > 0, we have
> Ky, Ay > Ky, Ay > Hs,
which, together withigzs — ms7; > 0, az3 — msH4 > 0, leads to
> Ky, A1 > Ky, Ay > K3, Az > Hy.
Similarly, we have
m>K,, A>Ky (1<1<j—-2), Aj;>H,,
which, together withw; 7 ; > m,;7;71, @41, > m;jH;.q, implies
m>K, A>Ky (1<1<j—1), A;>Hjy.
Finally, by a similar argument we obtain

H>K1, AZ>KZ+1 (1§l§n—2), A>T,

From what has been discussed above, we finally derive that

(2.24) maux [y (1)| < mac{|pil + i, |0i] + i} 2B, i=1,...n
telo,
Clearly,B; (i = 1,2,...,n) are independent of. DenoteB = > "' | B; + By, hereB, is taken
sufficiently large such that each solutitf, v3, . .., v*)T of the system of algebraic equations
(
— U — [T ————dt =0,
T —ane o o 1 ap—
J— w aj,j 1 6 vi-t d a]]+1 6 i+l
—7; e LI dt =0,
(2.25) KRy fo 1+ mj_jevi-t a55¢" fO 1+ mjevi
2<j<n-1

fw ann 1 )evn71 dt—

apne’™ =0
O 1+ m,_jevn— ’

\
satisfies|(vi, v5, ..., v5)T|| = Do, |vf| < B (ifitexists). Now, we také) = {(y1, y2, .., yn)" €

X : (1,92, ---,ya)"|| < B}. Thus, the condition (a) of Lemnja 2.1 is satisfied. When
(Y1, Y2, - yn)T € 0QNKer L = 0Q NR™, (y1,92,...,9,)" is a constant vector ilk™ with
>oi_y lui| = B. If system|[(2.2B) has solutions, then

1 w a12(t)ey2

T —ap e’ — — 0 7 1 — ur

1 Y1
m . + mye 0
:‘ | g a]] 1 eYi-1 o a]]+1 eyj+1 .
QN y.] - TJ_‘_ f() 1+m 1€y] dt (ZNBJ fo 1_|_m eYi 7& 0
Yn : 0

1 .o apn_1(t)eyn—1
-7, + — f Ldt -

w % 14+ m,_je¥—1
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If system [2.2b) does not have a solution, then we can directly derive

Y1 0
QN | + | #] :
Yn 0
Thus, the condition (b) in Lemnja 2.1 is satisfied.

In the following, we will prove that the condition (c) in Lemrha].1 is satisfied. To this end,
we definep : Dom L x [0,1] — X by

¢(y17 <oy Yn, :U’)

71— ae” 1 o apa(t)ev
w7 1+ men

w Qjj— 1 6 Yi-t —_— s

= T+ — fo —1 n m] T dt — a;,eY + _l f“’ jjt1 (t)eyj+1 ’

w0 1+ myevs

1 w an n_1<t)€yn71 '

7 _ > dt — T Yn
Tp + w fo 1+ m,_jevnt Ann€ 0

where . is a parameter. Whety:, y2,...,y,)7 € 02N R (y1, 40, ...,y,)T is a constant
vector inR™ with ", |y;| = B. We will show that when

(y17y27 s 7yn)T € oan KerL, (b(yhy% s 7yn7/i) # 0.

Otherwise, there is a constant vec(of, ...,y,)” € R™ with Y."  |y;] = B satisfying
d(Y1, Y2, - -+, Yn, 1) = 0, that is

1 w t)e¥2
ﬁ—a—neyl—u—/ e gy,
0

w 1+ mqen
1 (¥ a;;_1(t)e¥i—1 1 ¥ a;..1(t)eYi+t
—m—/ Mdt_wyj_p_/ Gt 0 o< i<n1
w o 1+mj_je¥i-t w. o 1+ mjei

1 w an n— t eynfl
—Tn + — / Ldt — Qe = 0.
wJo 1+my,_je¥n-1

By some similar arguments i (2]11]), (2.12), (2.14), (2.15), (2.[7),](2[18)(2.20) and (2.22) we

can show that

lyi| < max{|o;],|p:il},i=1,2,...,n
Thus
D lyil <) max{|pil, [6:]} < B,
=1 =1
which is leads to a contradiction. Using the property of topological degree and taking :
ImQ — Ker L, (y1, 92, -+, yn)" — (y1,%2, - ,ya)", We have
deg(JQN (1, ..., y) . QN Ker L, (0,...,0)7)

= deg(d(y1,- -, Yn, 1), 2N Ker L, (0,... ,O)T)
= deg(d(y1,...,yn,0), 2N Ker L, (0,...,0)T)
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1 w a.; ‘_1(t)€yj71
— T _ g oY1 . _ —‘77‘7 a9
= deg (((7’1 arett . T+ — /0 T mj_leyj—ldt aeY, ...

1 w n— t Yn—1 T
4 _/ %dt — anney”> , QNKerL,(0,... ,0)T> .
0

w 1+m,_ie¥n—1

Under assumption$ (H1) f (H2), one can easily show that the following system of algebraic
equations

(71 —anu =0,

_ Qji—1Uj—-1 _ .
_T.+—j’] —a.u: =0 2 < <n-1
(2.26) T Ty 4iWj , ST s
— Apn—1Un—1 —
—Ty + ———————— — Appty =0
L n 1 +mn_1un_1 nn %n )
has a unique solutiofu;, . .., u*)” which satisfies;; > 0, =1,...,n.

A direct calculation shows that

deg(JON (y1, 2, -, yn), QN Ker L, (0,0,...,0)) = sgn {H(—a_”)} =(—1)"#0.
=1

Finally, it is easy to show that the sek»(7 — Q) Nul|u € Q} is equicontinuous and uniformly
bounded. By using the Arzela-Ascoli theorem, we see iiatl — Q)N : Q — X is compact.
Moreover,QN (Q2) is bounded. Consequently, is L—compact.

By now we have proved that satisfies all the requirements in Lemfna]2.1. Hence, system
(2.3) has at least one-periodic solution. As a consequence, system|(1.1) has at least one
positivew-periodic solution. This completes the proof. O

3. GLOBAL ATTRACTIVITY

We now proceed to a discussion on the global attractivity of the positieeriodic solution
of system|(1.1). It is immediate that if any positive periodic solution of system (1.1) is globally
attractive, then it is in fact unique. We first derive certain upper and lower bound estimates for

solutions of [(1.11) {(1]2).

Lemma 3.1. Letz(t) = (z1(t), 22(t), ..., x,(t))" denote any positive solution of systém|(1.1)
with initial conditions [1.2). Then there existda> 0 such that

(3.1) O0<z; <M; for t>T, i=1,2,...,n,
where
(32) M, = a—Le Lo,
11
M] _ ajJ—l/mz—l T] e[(lj,j—lj\/[/mj—l_"'f]Tjj’ ] — 27 3’ S.,n.
a

i
The proof of Lemma 3]1 is similar to that of Lemina]2.1/in/[22], we therefore omit it here.

We now formulate the global attractivity of the positive-periodic solutions of systeryi (1.1)
as follows.

Theorem 3.2.In addition to (H]) —[(H2), assume further that
(H3) ligniani(t) >0,i=1,2,...,n,
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where
(3.3) Ay (t) = Cln(t) - m1a12(t)M2 - G21(t + 7'21)

— [r1(t) + ann (t) My + axo(t) Ms)] /th ai1(s)ds

t+27111

— an(t + Tl)Ml / an(S)dS
t+711
t+7121+722

— agl(t -+ 7'21>M2 / a21<8)d8,
t+T721
(3.4) A;(t) = aj;(t) — mjaz 1 () M1 — ajyr (¢ + Tjg1,5)

o (t t+7i-1,5-1
_ %_J<)/ a;_1;1(s)ds
t

mj—1

aj,j-1(t) s
=)+ = t aji (6) Mj + a1 (t) My ajj(s)ds
J— t

t+275;
— a;(t + 755) M; ajj(s)ds
t+75,
tHTi4+1,5 T4, 41
— aj15(t + Tir) M ajr141(s)ds, 2 <j<n—1,
74,5

(3.5) A, (t) = ann(t) — an—1.0(t)

— [rn(t) +

Qpon—1 (t)
Mp—1

t+Tnn
+ am(t)Mn] / Ui (8)ds
t

t+27Tnn
— U (t + Ton ) M, A (8)ds

t+Tpn

- t t+7'n—17”_1
el [
t

Mp—1

Then systenj (1.1) has a unique positiveperiodic solutionz*(t) = (x(t), ..., 2% (t))T which
is globally attractive.

Proof. Due to the conclusion of Theorgm P.2, we need only to show the global attractivity of the
positive periodic solution of (1}1). Let*(t) = (x}(t),...,z%(t))" be a positivev— periodic

rrn

solution of [1.1), and/(t) = (y1(?), .- ., y.(t))" be any positive solution of systefn (IL.1]—(1.2).
It follows from Lemmd 3.]L that there exist positive constahisnd /; (defined by|[(3.R)) such

that for allt > T,

We define
(3.7) Vi (t) = | Inj(t) — Iy (t)].
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Calculating the upper right derivative bf; (¢) along solution ofl), it follows fot > T that

(38) D'V,
_ (i’f(t) ()

zi(t) ()
= sgn(27(t) — vi(t)) { —an ()@t —7m11) — vt — 1))

_an(t)r3(t) n a/12(t)y2(t):|

1+ mlx’{ (t) 1+ mi1Yyi (t)

) sen(3 () — (1))

arz(t)(x5(t) — y2(1))
1+ mqxi(t)

yi(t) —

— sen(a}(t) — (1)) [— (1)} (¢
(e

miaia()ys (1)@ (1) = (1) e
(1+m1$1(t) (1+m1y1(t) + 11( )[ Tll(xl(u)_yl(u))du}
t

)
< —an(t)|z1(t) =y ()] + ar2]z3(t) — y2()] + miaia(t)ya(t)|27(t) — y1 ()]
can(®)| [ (@i = ()i
= —an(t)[z7(t) — y1 ()] + ar2(O)]25(t) — y2 ()| + maara(t)ya(t) |27 (t) — y1(?)]

rant)| [ {aiw {mu) - o= ) — 220

1+ myzi(u)

) =
)
)

— () [Tl(u) — an (wyi(u — el ]} '

1 + m1y1

= —an()]21(t) = 1 (D] + ara(B)[25(8) = w2(0)] + maara()ya(1)]27(8) = 91 (1))

/:m { {”(“) — an(wyr(u — )

o )y () .
(1+m1x1(u))(1+m1y1( ))} (@1(t) — v (t))
)(@7

—ay(w)x] (w) (2] (v — 111) — y1(u — 741))
a12(u)x1(u

1 —i—mlfﬁ( ~ul )} du

< —an(®)]27(t) — y1(O)] + aw(t)]23(t) — y2(8)] + miawn(t)ye(t)]27(t) — yu(t)]

/t_ {[7‘1(“) + a11(w)yr (v — 711) + a2 (w)y2(w)]|z7 (u) — yi(u))|

+ a11<t>

+ (111<t>

+ an(i(ei( = m) - o= 7l + 22 0) - )] ]

We derive from[(3.6) and (3.8) that for> T" +

(3.9) DTV (t)
< —an@)|z1(t) = ()] + ara(O)|25(t) = 42 ()] + maara(t) Ma|1(t) — 1 (1))
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+ an(t)

/t_ {[Tl(u) + ay1 (u) My + arg(u) Ma][27(u) — y1(u)]
CZ12<U>

1

+ ay (u) My |2y (v — 711) — y1(u — 711)| +

23000 ~ ()]  da.

Define

(3.10) Vio(t / v /_ aip S){[Tl( )+ arn(u) My + ara(u) Msl|x] (u) — ya(u)]
ai2(u)

1

Fay (u) M|z} (u — 711) — yi(u — 711)| +

5000 ~ ya(0)| s
It follows from (3:3) and[(310) that far > T + 7
(3.11) D*(Vu(t) + Via(t))
< —an(@1(0) — ()] + a0 — 12(0)] + oMl (1) — ()
# [ s 0+ o 01 + a3 (0~ o)

2 e300 - (o)}

4 ay () My |z (t — 711) — y1(t — 701)| +

We now define

(3.12) Vi(t) = Vi (t) + Via(t) + Vis(t),
where
I+2111
(313) ‘/13 Ml/ CLH CLH l—|— T11)|.T1( ) (l)|d$dl
t—711 Ji+T11

It then follows from [3.I]1) {(3.13) that far> T + 7
(3.14) D*Vi(t)
< —an(®)|z7(t) — ya(t)| + ara(t)|25(2) — y2(O)] + maara(t) Ma|z((t) — yi(1)]
t+7111
# [ a0 + 3 + 0nlei0) - (o)
alg(t)

1

t+2711

() — y2<t>|} an(t + )My 230 — 3 (1))

t+7111

_|_

Define

(3.15) V;(t) = [Inz}(t) —lnyj(t)H/t ajj-1(s + Tjj-1)|2j_1(s) — yj-1(s)|ds

73,51

L e
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ajj1(u .
B 00, + aggea()0 | 50 = (0
-

+ ajj(u) Mj|z} (u — 755) — y;(u — 755)]
+ajj1(w) Mol (u—T755-1) — yj—1(u — 7j5-1)|

+a“+—1”|x]+1< - yj+1<u>>|}duds

_|_

I+27;;
+ M; / aj;(s)ag; l+7—]])|x (1) = y;(D)|dsdl
t—T7j;

l4+755

I+75,5-14755
+ M; /t aj(s)ajj-1(0+ 7j-1)|x;_1 (1) — yj—1(1)|dsdl,
Tj,5—1

+T]] 1

71=2,3,...,n—1.

(3.16) Vo(t) = [In ) (t) — Inyn ()]
n / i1 (5 + Tan)|75_1(5) = Y (5)]ds
t+’r§,j1 t
L ir{ o
i am—(“) + am<u>Mn} () — ()

+ My (w) |2, (U = Ton) — Yn (U — Ton)|

+ Mnan,n—1<u)|x2—1(u - Tn,n—l) - yn—l(u - Tn,n—1)| }dUds

I+2Tnn
+ Mn/ A (8) i (L + T |2 (1) — Y (1)|dsdl
t—Tnn

I+Tnn

t l+Tn,n 1+Tnn
+ Mn/ / ann(s)an,nfl(l + Tn,nfl»
t—Tn,n—1

I4+Tn,n—1
X |z, 1 (1) = yn—a (D) dsdl.
Finally, we define

=2 _Vi®)
We derive from[(3.14) {(3.16) that for> T’ —|j_7'
(317) W < > Al ) - w0,

whereA;(t)(i = 1,...,n) are as defined iff (3.3) { (3.5).
By hypothesis[(HB), there exist constants> 0 (i = 1,...,n) andT* > T + 7, such that

(3.18) Ai(t) > a; > 0for t > T
Integrating both sides df (3.117) ¢#*, ¢], we derive

319) VO + Y [ Al - uolds < V(T)
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It follows from (3.18) and[(3.119) that
n t
V(t) + ZO%/ |25 (s) — yi(s)|ds < V(T™) for t > T*
i=1 ™

Therefore,V (t) is bounded on7™, o] and alsof;* zi(s) — yi(s)|ds < oo, i=1,...,n.0n
the other hand, by Lemnja 3.1} () — v;(¢)| are bounded ofil™*, co0). According to system
(1.1), we see that;(¢) andy,(¢) are also bounded. Hence; (¢) — y;(t)| (i = 1,...,n) are
uniformly continuous oriT™, co). By Barbalat’s Lemma (se& [15]), we can conclude that

Jim 7))~ i) =0, i=1,...,n.

The proof is complete. O
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