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ABSTRACT. Herein, we consider the existence of solutions to second-order systems of two-
point boundary value problems (BVPs). The methods used involve the topological transversality
approach of Granas et. al. combined with a Bernstein-Nagumo condition from Gaines and
Mawhin. The new results allow the treatment of systems of BVPs without growth restrictions
in the third variable. The new results also are applicable to systems of BVPs that may have
singularities in the right-hand side at the end-points of the interval of existence. Some examples
are presented to illustrate the theory.
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1. INTRODUCTION
Consider the existence of solutions to the second-order, ordinary differential equation
(1.1) 2" = F(t,x,2), t €10,1],

subject to some suitable boundary conditions.

Topological methods, used in proving the existence of solutions to boundary value problems,
such as: the continuation method of Gaines and Mawhin[[5], [6]; or the topological transver-
sality method of Granas, Guenther and Lee [9]/ [10]; generally rely on guarantgingri
bounds on solutions (and their derivatives) to the BVP under consideration in such a way that
the same priori bounds apply to a certain family of BVPs.
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2 CHRISTOPHERC. TISDELL AND LIT HAU TAN

A classical issue associated with the preceding discussion is the following question. How can
we ensure aa priori bound on solutions’ derivatives to (1.1) with the bound on’ being in
terms of ama priori bound on possible solution®? A sufficient condition that guarantees the
desireda priori bound onz’ is traditionally known as a “Bernstein-Nagumo condition”.

For scalar-valued BVPs, many authors have formulated Bernstein-Nagumo conditions for
(1.7), for example:[[3],[18],[15]/[14],122]/]1]/[10]/[16] and also see references therein.

However, for vector-valued BVPs (i.é! : [0, 1] x R?*" — R"), less is known about sufficient
Bernstein-Nagumo conditions, perhaps to the Bernstein-Nagumo question becoming more dif-
ficult than in the scalar-valued situation (seke [2, Remark 1.41] or [12] for more discussion and
some examples.)

Authors such as: Hartman [11]; Schmitt and Thomps$on [21]; Gaines and Mawhin [6]; Fabry
[4]; George and Sutton [7]; and George and Yark [8] have all presented interesting Bernstein-
Nagumo conditions for vector BVPs. Their conditions involved growth-type conditions on
in 2’ or the existence of suitable Lyapunov functions.

Herein, we consider vector equations of the type

(12) = (L), te0],
wheref : [0,1] x R** — R" and [1.2) is subject to the following boundary conditions:
(1.3)  2(0) =g (z(0)),  2'(1) = go(2(1)), (whereeach g;: R — R").

Well-known special cases of the rather general boundary condifions (1.3) include: the Sturm-
Liouville boundary conditions

(1.4) az(0) — ' (0) = C,vx(1) + d2'(1) = D,

a, 3,7, 0 are constants iR; C, D are constants iiR";
and the homogenous Neumann boundary conditions
(1.5) 2(0)=0,  2'(1)=0;

plus variations of the above (see Remérks$ 2.5 arjd 2.7), including nonlinear boundary conditions.

In Sectiorf 2 we combine the topological transversality method of [10, Theorem 2.6] in con-
junction with a general Berstein-Nagumo condition from [6, Proposition 5.1]. The combination
leads to novel and quite general existence theorems for solutions to the above systems of BVPs.
In particular, the new results extend the workings of [10] and [6] in the sense that the new results
herein allow the treatment of certain classes of BVPs whereas the theoremss of [10] and [6] may
not directly apply.

In Sectior] B we briefly consider systems of BVPs with singularities in the right-hand side.

Examples are presented throughout the paper to demonstrate the applicability of the new
theorems. It appears that no existing theory in the literature is applicable to the examples given.

2. EXISTENCE RESULTS

To generate our new topological transversality-based existence theorems, we consider the
following family of BVPs:

(2.2) a(t)x” +o(t)x + c(t)r = N\g(t, z,2"), t€]0,1],
(2.2) aox(0) + a12'(0) + agz (1) + azz’ (1) = Mpy(2(0), 2'(0), z(1), 2'(1)),
(2.3) box(0) + b12(0) + baz (1) + bz’ (1) = Mpa((0), 2(0), (1), 2'(1)),

where:\ € [0,1]; a,b, c are continuous functions witl(t) # 0 for anyt € [0, 1]; eacha; and
b; are constants; : [0, 1] x R?*" — R™ and each); : R — R".

J. Inequal. Pure and Appl. Math6(5) Art. 137, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

BVPS WITHOUT GROWTH RESTRICTIONS 3

Below we denotd| - || as the usual Euclidean norm afd-) as the usual inner product on
R™.

To streamline the proofs of our results, we will use the following existence theorem, a vector-
variant of [10, Theorem 6.1, Chap.lI].

Theorem 2.1. Let g and eachy; be continuous and le® > 0 be a constant independent of
If:

(2.4) the family [2.1)4(2]3) has only the zero solution for 0; and

(2.5)  for A € (0,1] all possible solutions € C*([0, 1]; R") to (Z.1){2.3) satisfy
max {|lz(0)], /O, =" @)} < R, te0,1],

then for\ = 1 the BVP[(2.]1)+(2]3) has at least one solution.

Theorem 2.2. Let f be continuous and le¥/, N be positive constants with

- > ma {1 DL i),
6] 6]
If
(2.7) a/B>0, v/§ <0, aly+ )+ By #O0;
and
(2.8) (z, f(t,z,2)) + ||2'||* >0, for te€]0,1], ||z| > M, (x,2') =0;
and
(2.9) (2, f(t,z,2")) >0, for tel0,1], ||| < M, ||2'|| = N,

then [1.2),[(1.4) has at least one solution.
Proof. Consider the family of BVPs:

(2.10) 2 =Nf(t,x,2"), tel0,1],
(2.11) ax(0) — B2'(0) = \C,
(2.12) vz (1) 4+ d2'(0) = AD,

for A € [0,1] and see that this is in the forfn (2.1)—(2.2), witk= f.

Letz be a solution td (2.10)=(2.12). Sina¢y + §) + 3 # 0, note that, for\ = 0, the above
family of BVPs only has the zero solution by direct calculation.

We show that{(2]8) andl (3.7) imply
€]l

o ”

1D

il
Considerr;(t) = ||z(¢)||* for ¢ € [0,1] and lett, € [0, 1] be such that: (ty) = maxejo 1 7(¢).
If 71(ty) = 0thenry(t) = 0 forall ¢t € [0,1] and obviouslyi|jz(t)|| = 0 < M forall t € [0, 1]
and allM > 0, so assume; (ty,) > 0 from now on.

(2.13) |lx(t)|] < My = max{ M, } , for te]0,1].

If to = 0then
0> ¥ (1) = 2((0), 2'(0))
~ 2(0), “=2) rom @)
e (4 E0)A0)
‘25'@”<l MM@W)‘
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4 CHRISTOPHERC. TISDELL AND LIT HAU TAN

Thus, by [(2.77),
(2(0),AC) _ [lz(O)]lIC]]
1
= alle@FF = fof [+(0)]*
gives||z(0)|| < ||C||/|a| and we must havgz(t)|| < ||C||/|«| forall ¢ € [0, 1].
If o = 1 then0 < (1) and a similar argument to the cage= 0 gives||z(t)| < || D]|/|v]
forall¢t € [0,1].
If to € (0,1) andry(to) > M? then0 = r{(to) = 2(x(ty), 2'(ty)). We also have
0> r{(to) = 2 [(x(to), 2" (to)) + |2’ (to)[|"]
= 2 [(z(to), Mf(to, 2(to), @' (to))) + ll2'(to) I?]
> 2 [(x(to), f(to, 2(to), 2'(t0))) + |2/ (t0) I*]
> 0,

by (2.8), a contradiction. Hence we haye(t,)|| < M for all t, € (0, 1).

Combining all of the above bounds we obtdin (2.13).

Letz € C*([0,1]; R") be a solution to] (1]2) withjz(¢)|| < M, for ¢ € [0,1]. We now show
that [2.6) and[(2]9) implyj2’(¢)|| < N for all ¢ € [0, 1].

Argue by contradiction by assumingt,) = ||z’ (t)|*> — N* > 0 for somet, € [0,1] such
thatmax;cp 1 7(t) = 7(to). If £, = 0 then rearranging the boundary conditions we obtain

1= (0)I =

H)\C’ —60495(0) H < |C| + || M N

16l
and thus-(0) < 0. Similarly,

DI+ [y M

o) < 2

< N,

and thus-(1) < 0. So we see that € (0,1).
Now sincer(1) < 0 andr(t,) > 0 we must have a pointf € [ty, 1) such that(¢;) = 0 and

02 1'(t) = 202/ (1), (1))
= 2(z' (t1), M\ (t1, x(t1, 2/ (t1)))
> 0,

forall A € (0, 1] by (2.9), a contradiction.
It is clear to see that once bounds:oandz’ are found, a bound ort’ follows naturally, as

" (1) = A (@) < 1ty 2]
<P for te0,1], ol <M. ] <N,

for someP > 0.
So we see that there exists Bn> 0 with

Rzmax{lrnax{M M, M}, N, P}+1

jaf * il
such that[(2)5) holds.
Thus, by Theorerp 21, the family (2]10)—(2.12) has a solution\fer1. For A = 1, (2.10)-
(2.12) is equivalent td (1}2)~(1.4) and hence the result follows. O
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Example 2.1.Letx = (21, z2) andp = (p1, p2). Consider[(1.2)[(1]4) fon = 2, where
f(t,l’,p) = f(t7$lax2aplap2)

e+ aip? + p
= , telo,1],

Toe™P2 + w3pd + po

(asl(m ) : ( #4(0) ) (5 (xl(l) ) . ( 7 (1) ) (&
22(0) 4(0) % 72(1) 75(1) 7
There is no growth condition applicable foand thus the theorems of [11], [21],/ [4] do not

apply. We will apply Theorerp 2] 2.
Firstly, for ||z|| > M, with M to be chosen below, and, p) = 0, consider

(@, f(t,x,p)) = 7™ + (21p1)° + 21p1 + 25672 + (22p2)* + 2P
= e"P2 [} + 23] (sincexip; = —xopo)
> (0 for any positive choice of/.

For convenience, choosé = 1, thus [2.8) holds. Now, fofz|| < 1, ||p| = N = 2 we have

(p, f(t,2,p)) = p11€™P + 23} + P} + pawae™ + x3py + pj
> 4+ e"P2prxy + paty)
>2>0 for |z <1, []p|| =2,

thus [2.9) holds.
It is easy to see thak (2.6) holds for our choicelddf = 1 and N = 2 and for the given
boundary conditions. Thus Theoré¢m|2.2 is applicable and the BVP has a solution.

Theorem 2.3.Let f be continuous and le¥/, N be positive constants with
(2.14) 2N? > —(z,2'), for |z|| <M, ||2'|| = N.

If 2.8) and [(2.9) hold thenj (1.2), (1.5) has at least one solution.

Proof. Consider the family of BVPs:

(2.15) 2 =2 —x = \Nf(t,x,2") — 22 —x], te€]|0,1],
(2.16) z'(0) =0,
(2.17) (1) =0,

for A € [0, 1] and see that this is in the forfn (2.1)—(2.3) wittt, z, ') = f(¢t,z,2') — 22/ — x.

Let = be a solution tof (2.15)=(2.1.7). By direct calculation, the only solutiop t0[(2/15)4(2.17)
for A\ =0isz = 0, so (2.4) holds.

Now rearranging (2.15) we obtain

(2.18) 2 = Mt 2, 2") + 201 = N + (1= Nz, t€0,1],
= q(t, z,2").

We show that|z(¢)|| < M for all ¢t € [0,1] and allX € (0,1]. Considerr(t) = ||z(t)|]* for
t € 0,1] and lett, € [0, 1] be such that(ty) = maxepo1) r(t) > M>.
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6 CHRISTOPHERC. TISDELL AND LIT HAU TAN

If £, = 0 then the boundary conditions giye(0), z'(0)) = 0. Therefore, by[(2]8) we have
0 < 2 [{(0), £(0,2(0),2'(0))) + [|l'(0)[|*] , and so

0<2)\[< (0), £(0,2(0),2'(0))) + [l (0)[[*] . for X € (0, 1]
<2 [(2(0), Af(0,2(0),27(0))) +2(1 = A){(x(0), 2(0)) + (1 = M) [|=(0)[* + [[2"(0)]?]
[(96 (0), 9x(0,2(0), 2(0))) + [[2"(0)|1?]
=2 [(2(0),2"(0)) + [l (0)|]?]
=r"(0),

sor/(t) is strictly increasing fot near 0. Thereforé = +/(0) < /(¢) for ¢ near 0. This means
thatr(t) is increasing fot near 0O, that isy(0) < »(¢) and hence (0) # max,c(o,1 ().

If £, = 1 then a similar argument to the case fpr= 0 gives||z(1)|| < M.

If t, € (0,1) then an identical argument to the proof of Theofen) 2.2 gives)| < M.
Hence we havéz(t)|| < M forall ¢t € [0, 1].

Consider solutions € C?([0, 1]; R™) with ||z(¢)|| < M for ¢ € [0, 1]. We now show that
(2.9) imply||2/(t)|| < N forall ¢t € [0, 1].

Argue by contradiction by assuming(t,) = ||2'(to)||* — N* > 0 for somet, € [0, 1] such
thatmaxcjo,1) 1(t) = r1(to). The boundary conditions givg(0) < 0 andr,(1) < 0. So we
see that, € (0,1). Now sincer;(1) < 0 andr(ty) > 0 we must have a poirtt € [ty, 1) such
thatr(¢;) = 0 and

)
2(1 = N2’ () + (1 = M) {(t), /(1))
(1= N[2N? = (z(t1), 2'(t1))]

for all A € (0, 1], a contradiction.

Hence we havéx'(t)|| < N fort¢ € [0, 1].

Sincea priori bounds are now obtained anand z’, the a priori bound onz” naturally
follows as in the proof of Theorem 2.2.

Hence, by Theorein 3.1, the family (2]15)—(2.17) has a solution ferl, which is identical

to the BVP [(1.2),[(1.J5) and hence the result follows. O
Example 2.2. Consider the scalar BVP (1.2), (1.5) whefrés given by the right-hand side of
(2.19) = (z+1+2)e, tel01]

It is not difficult to show that[(2.79) satisfigs (R.§), (2.9) and (R.14)Mbr= 3/2 and N = 2.
Thus, by Theorem 2,3 we conclude that the scalar BVP [2[19), (1.5) has at least one solution.

Theorem 2.4.Let f, g; and g, be continuous and le¥/, N be positive constants such that

(2.20) v 5 e { e (o)), mo: o)l |
If
(2.21) (z,91(2)) >0, (2,92(2)) <0, forall |z| > M,

and [2.8),[(2.P) hold, ther (1.2), (1.3) has at least one solution.
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Proof. Consider the family of BVPs:

(2.22) 2" =22 —x = \Nf(t,x,2") — 22" — x|, te€]0,1],
(2.23) 2'(0) = Agi(x(0)),

(2.24) (1) = Aga(2(0)),

for A € [0, 1].

Let = be a solution to[ (2.22)(2.24). See that, for 0, the above family of BVPs only has
the zero solution.

We show that|z(t)|| < M, fort € [0,1]. Considerr,(t) = ||z(¢)||* for ¢t € [0, 1] and let
ty € [0, 1] be such thai’l(t(]) = max ¢ego,1] 7’1(75) > M2,

If to = 0then

0 > ry(to) = 2(z(0), 2'(0))

= 2(z(0), Ag1(x(0))) from (2.11)
>0

a contradiction.

If o = 1then0 < r{(1) and a similar arguement to the cage= 0 gives another contradic-
tion.

If ty € (0,1) such that(ty) > M? then0 = /| (to) = 2(x(to), 2/ (to)) and0 > 77 (¢o) with a
contradiction arising by (2]8) as in the proof of Theofen} 2.3. Hence we |hag)| < M for
all ¢y € (0,1).

Consider solutions: € C2([0, 1]; R") to (2.22) with||z(¢)|| < M for t € [0,1]. We now
show that[(2.20) and (3.9) implj’(¢)|| < N forall ¢ € [0, 1].

Argue by contradiction by assumingt,) = ||2'(t)|*> — N? > 0 for somet, € [0,1] such
thatmax,cjo,1) r(t) = 7(t0). By (2.20) we have (0) < 0 andr(1) < 0 in a similar fashion to
the argument in the proof of Theordm[2.2. So we seethat (0,1). Now sincer(1) < 0
andr(to) > 0 we must have a point; € [ty, 1) such that-(¢;) = 0 and0 > »/(¢;) with a
contradiction being reached as in the proof of Thedrerm 2.3.

Hence we havélz/(t)|| < N fort € [0,1].

Sincea priori bounds are now obtained anand z’, the a priori bound onz” naturally
follows as in the proof of Theoremn 2.2.

Hence, by Theorem 3.1, the family (2]15)—(2.17) has a solution fer1, which is just the
BVP (1.2), [1.4) and hence the result follows. O

Remark 2.5. Theorenj 2.4 may be generalised to tréat|(1.2) subject to
(2.25) 2'(0) = g5(x(0),2(0), z(1), 2'(1))
(2.26) (1) = ga(x(0),2(0), z(1), 2'(1))

in the following way.
Let f, g3 andg, be continuous and |€t/, N be positive constants. Suppose eag¢h, i, j, k)
is bounded on the sé?, where

D= {(h,i,5,k) e R |h| < M, || < M, (i, k) € R*"}

and

(2.27) N>maX{ sup |lgs(h, 4,5, k)|, sup Hg4(h,i,J}k)H}~

(h7l7]7k)eD (h7l7j7k“)€D
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If (2.8), (2.9) hold and
(h,g3(h,i,j,k)) >0, for h#0, (i,5,k) € R*™"
(j,ga(h,i,5,k)) <0, for j#0, (hi,k)eR™"
then the BVP[(1]2)[(2.25), (2.R6) has at least one solution.
Remark 2.6. It is also clear that by combining the relevant bounding inequalities used in each

of the Theorems in this section, the treatmen of]|(1.2) subject to any of the following boundary
conditions is possible:

2(0) =0, ~z(1)+02'(1)=D, ~/5<0,
az(0) — p2'(0) =C, 2/(0)=0, a/f>0,
2'(0) =0, (1) = g2(2(0)),
'(0) = g1(x(0)), 2'(1) =0,
and so on.

Remark 2.7. In Theoremsg 2]2-2/4 the inequalify (2.9) could be reversed and the existence
theorems would still hold. However, for brevity we omit the statement of these new results.

3. ONBVPS WITH SINGULARITIES

In this final section we consider systems of BVPs that may have singularities in the right-hand
side. Consider

(3.2) " =) f(t,z,2"), telo,1],

subject to any of the boundary conditiops {1.8)H(1.5). Here: [0, 1] — [0, c0) is continuous
withn > 00on(0, 1), n is integrable or0, 1] andn may be singular at= 0 or att = 1. Probably
the most famous type of BVP involving singularities in the right-hand side is the Thomas-Fermi
equation, ¢(t) = 1/v/, f(t,z,2') = 2*/?) which appears in the study of electron distribution
in an atom([13].

In view of the proof of [17, Theorem 1.5] and [17, Theorem 0.1], in order to prove the
existence of solutions td (3.1) subject[to (2.2),{2.3), it is sufficient to show that:
(i) all solutions to

(3.2) a(t)x” +b(t)x’ + c(t)x = In(t)g(t,z, "), te0,1],
(3.3) agx(0) + a12'(0) + axx(1) + asz’(1) = M (x(0), 2'(0), 2(1), 2'(1)),
(3.4) boz(0) 4 b12"(0) + bz (1) + b3z’ (1) = Me(2(0),2/(0), z(1), 2'(1)),

satisfy
max{[[z(t)||, ')} < R, te€0,1],

for someR > 0, independent ok € (0, 1]; and
(i) that for A = 0, the family [3.2)4(3.4) has only the zero solution. Then, foe 1, the
BVP (3:2){3:%) will have at least one solutiondGt ([0, 1]; R™). (This solution will also be in
C?((0,1); R™) because solutions tp (3.2) are absolutely continuouf)orj and satisfy[(3]2)
almost everywhere.) Aboveg,and each); are as in Section 2.

There are only minor modifications needed in the proofs of Seftion 2 to obtampheri
bounds on solutions td (3.1) and therefore we only present the statement of the new theorems
for brevity.

Theorem 3.1.Letn be as above and lef be continuous. Lef\/, N be positive constants

satisfying(2.9) If (2.7), (2.8) (2.9)hold then(3.7), (I.4) has at least one solution.
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Theorem 3.2. Letn be as above and lef be continuous. Lef/, N be positive constants

satisfying(2.14) If (2.8)and (2.9)hold then(3.7)), (I.5) has at least one solution.

Theorem 3.3. Let , be as above and lef, g; and g, be continuous. Lef/, N be positive

constants suclZ2.20) holds. If (2.21) holds and(2.8), (2.9) hold, then(3.1), (1.3) has at least

one solution.

Example 3.1. Let f and the boundary conditions be defined as in Exarple 2.1. Consider
n(t) = 1/v/t. Then by Theorerh 31 the singular BVP under consideration has at least one
solutionz € C*([0,1]; R™) N C%((0,1); R™),

Example 3.2.Let z = (21,z2) andp = (p1,p2). Consider[(3]1),[(1]4) forn = 2, where
n(t) =1/Vt

f(t7x7p) = f(thlwrQ’php?)

(21 4+ p1)k(t, x1, 22, p1, P2)
= , te]0,1].

(o + p2)k(t, x1, 2, D1, P2)

There is no growth condition applicable faand thus the theorems of [11], [21]) [4], 119], 120]
do not apply.
We claim that the singular BVP has a solutiortifs continuous and satisfies

k(tvzlax27pl7p2) > 07 for all (t7x17x2ap1ap2) € [Oa 1] X Rz X RQ?
for someM < N such that[(2J6) and (2.7) hold.
We will apply Theoren 3]1.
Firstly, for ||z|| > M and(x,p) = 0, consider
(z, f(t,z,p)) = k(t, 1,22, p1,p2) (2] + 23 + 211 + T2p2]
= k(t,z1, 29, p1,p2) 2% + 23]  (SiNcex p; = —x9py)
> 0 for any positive choice ol.

Thus [2.8) holds. Now, fotz|| < M, ||p|| = N we have

(p, f(t,z,p)) = k(t,x1, 22, p1,p2) [P121 + P22 + P} + D3
> k(t, 21,22, p1, p2) [N? + pray + pata)
>0 for |lzf| <M, |pl| =N,

for any choice ofV such thatV > M, thus [2.9) holds.
Thus by Theorem 3|1 the singular BVP under consideration has at least one solution
CH([0,1];R™) N C2((0, 1); R™).
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