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ABSTRACT. Herein, we consider the existence of solutions to second-order systems of two-
point boundary value problems (BVPs). The methods used involve the topological transversality
approach of Granas et. al. combined with a Bernstein-Nagumo condition from Gaines and
Mawhin. The new results allow the treatment of systems of BVPs without growth restrictions
in the third variable. The new results also are applicable to systems of BVPs that may have
singularities in the right-hand side at the end-points of the interval of existence. Some examples
are presented to illustrate the theory.
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1. I NTRODUCTION

Consider the existence of solutions to the second-order, ordinary differential equation

(1.1) x′′ = F (t, x, x′), t ∈ [0, 1],

subject to some suitable boundary conditions.
Topological methods, used in proving the existence of solutions to boundary value problems,

such as: the continuation method of Gaines and Mawhin [5], [6]; or the topological transver-
sality method of Granas, Guenther and Lee [9], [10]; generally rely on guaranteeinga priori
bounds on solutions (and their derivatives) to the BVP under consideration in such a way that
the samea priori bounds apply to a certain family of BVPs.
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2 CHRISTOPHERC. TISDELL AND L IT HAU TAN

A classical issue associated with the preceding discussion is the following question. How can
we ensure ana priori bound on solutions’ derivativesx′ to (1.1) with the bound onx′ being in
terms of ana priori bound on possible solutionsx? A sufficient condition that guarantees the
desireda priori bound onx′ is traditionally known as a “Bernstein-Nagumo condition”.

For scalar-valued BVPs, many authors have formulated Bernstein-Nagumo conditions for
(1.1), for example: [3], [18], [15], [14], [22], [1], [10], [16] and also see references therein.

However, for vector-valued BVPs (i.e.F : [0, 1]×R2n → Rn), less is known about sufficient
Bernstein-Nagumo conditions, perhaps to the Bernstein-Nagumo question becoming more dif-
ficult than in the scalar-valued situation (see [2, Remark 1.41] or [12] for more discussion and
some examples.)

Authors such as: Hartman [11]; Schmitt and Thompson [21]; Gaines and Mawhin [6]; Fabry
[4]; George and Sutton [7]; and George and York [8] have all presented interesting Bernstein-
Nagumo conditions for vector BVPs. Their conditions involved growth-type conditions onF
in x′ or the existence of suitable Lyapunov functions.

Herein, we consider vector equations of the type

(1.2) x′′ = f(t, x, x′), t ∈ [0, 1],

wheref : [0, 1]× R2n → Rn and (1.2) is subject to the following boundary conditions:

(1.3) x′(0) = g1(x(0)), x′(1) = g2(x(1)), (where each gi : Rn → Rn).

Well-known special cases of the rather general boundary conditions (1.3) include: the Sturm-
Liouville boundary conditions

αx(0)− βx′(0) = C, γx(1) + δx′(1) = D,(1.4)

α, β, γ, δ are constants inR;C,D are constants inRn;

and the homogenous Neumann boundary conditions

(1.5) x′(0) = 0, x′(1) = 0;

plus variations of the above (see Remarks 2.5 and 2.7), including nonlinear boundary conditions.
In Section 2 we combine the topological transversality method of [10, Theorem 2.6] in con-

junction with a general Berstein-Nagumo condition from [6, Proposition 5.1]. The combination
leads to novel and quite general existence theorems for solutions to the above systems of BVPs.
In particular, the new results extend the workings of [10] and [6] in the sense that the new results
herein allow the treatment of certain classes of BVPs whereas the theorems of [10] and [6] may
not directly apply.

In Section 3 we briefly consider systems of BVPs with singularities in the right-hand side.
Examples are presented throughout the paper to demonstrate the applicability of the new

theorems. It appears that no existing theory in the literature is applicable to the examples given.

2. EXISTENCE RESULTS

To generate our new topological transversality-based existence theorems, we consider the
following family of BVPs:

a(t)x′′ + b(t)x′ + c(t)x = λg(t, x, x′), t ∈ [0, 1],(2.1)

a0x(0) + a1x
′(0) + a2x(1) + a3x

′(1) = λψ1(x(0), x
′(0), x(1), x′(1)),(2.2)

b0x(0) + b1x
′(0) + b2x(1) + b3x

′(1) = λψ2(x(0), x
′(0), x(1), x′(1)),(2.3)

where:λ ∈ [0, 1]; a, b, c are continuous functions witha(t) 6= 0 for anyt ∈ [0, 1]; eachai and
bi are constants;g : [0, 1]× R2n → Rn and eachψi : R4n → Rn.
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BVPS WITHOUT GROWTH RESTRICTIONS 3

Below we denote‖ · ‖ as the usual Euclidean norm and〈·, ·〉 as the usual inner product on
Rn.

To streamline the proofs of our results, we will use the following existence theorem, a vector-
variant of [10, Theorem 6.1, Chap.II].

Theorem 2.1. Let g and eachψi be continuous and letR > 0 be a constant independent ofλ.
If:

the family (2.1)–(2.3) has only the zero solution forλ = 0; and(2.4)

for λ ∈ (0, 1] all possible solutionsx ∈ C2([0, 1]; Rn) to (2.1)–(2.3) satisfy(2.5)

max {‖x(t)‖, ‖x′(t)‖, ‖x′′(t)‖} < R, t ∈ [0, 1],

then forλ = 1 the BVP (2.1)–(2.3) has at least one solution.

Theorem 2.2.Letf be continuous and letM,N be positive constants with

(2.6) N > max

{
‖C‖+ |α|M

|β|
,

‖D‖+ |γ|M
|δ|

}
.

If

(2.7) α/β > 0, γ/δ < 0, α(γ + δ) + βγ 6= 0;

and

(2.8) 〈x, f(t, x, x′)〉+ ‖x′‖2 > 0, for t ∈ [0, 1], ‖x‖ ≥M, 〈x, x′〉 = 0;

and

(2.9) 〈x′, f(t, x, x′)〉 > 0, for t ∈ [0, 1], ‖x‖ ≤M, ‖x′‖ = N,

then (1.2), (1.4) has at least one solution.

Proof. Consider the family of BVPs:

x′′ = λf(t, x, x′), t ∈ [0, 1],(2.10)

αx(0)− βx′(0) = λC,(2.11)

γx(1) + δx′(0) = λD,(2.12)

for λ ∈ [0, 1] and see that this is in the form (2.1)–(2.2), withg = f.
Let x be a solution to (2.10)–(2.12). Sinceα(γ+ δ)+βγ 6= 0, note that, forλ = 0, the above

family of BVPs only has the zero solution by direct calculation.
We show that (2.8) and (2.7) imply

(2.13) ‖x(t)‖ ≤M1 := max

{
‖C‖
|α|

, M,
‖D‖
|γ|

}
, for t ∈ [0, 1].

Considerr1(t) = ‖x(t)‖2 for t ∈ [0, 1] and lett0 ∈ [0, 1] be such thatr1(t0) = maxt∈[0,1] r(t).
If r1(t0) = 0 thenr1(t) = 0 for all t ∈ [0, 1] and obviously‖x(t)‖ = 0 < M for all t ∈ [0, 1]
and allM > 0, so assumer1(t0) > 0 from now on.

If t0 = 0 then

0 ≥ r′1(t0) = 2〈x(0), x′(0)〉

= 2〈x(0), αx(0)− λC

β
〉 from (2.11)

= 2
α

β
‖x(0)‖2

(
1− 〈x(0), λC〉

α‖x(0)‖2

)
.
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4 CHRISTOPHERC. TISDELL AND L IT HAU TAN

Thus, by (2.7),

1 ≤ 〈x(0), λC〉
α‖x(0)‖2

≤ ‖x(0)‖‖C‖
|α| ‖x(0)‖2

,

gives‖x(0)‖ ≤ ‖C‖/|α| and we must have‖x(t)‖ ≤ ‖C‖/|α| for all t ∈ [0, 1].
If t0 = 1 then0 ≤ r′1(1) and a similar argument to the caset0 = 0 gives‖x(t)‖ ≤ ‖D‖/|γ|

for all t ∈ [0, 1].
If t0 ∈ (0, 1) andr1(t0) ≥M2 then0 = r′1(t0) = 2〈x(t0), x′(t0)〉. We also have

0 ≥ r′′1(t0) = 2
[
〈x(t0), x′′(t0)〉+ ‖x′(t0)‖2

]
= 2

[
〈x(t0), λf(t0, x(t0), x

′(t0))〉+ ‖x′(t0)‖2
]

≥ 2λ
[
〈x(t0), f(t0, x(t0), x

′(t0))〉+ ‖x′(t0)‖2
]

> 0,

by (2.8), a contradiction. Hence we have‖x(t0)‖ < M for all t0 ∈ (0, 1).
Combining all of the above bounds we obtain (2.13).
Let x ∈ C2([0, 1]; Rn) be a solution to (1.2) with‖x(t)‖ ≤ M1 for t ∈ [0, 1]. We now show

that (2.6) and (2.9) imply‖x′(t)‖ < N for all t ∈ [0, 1].
Argue by contradiction by assumingr(t0) = ‖x′(t0)‖2 − N2 ≥ 0 for somet0 ∈ [0, 1] such

thatmaxt∈[0,1] r(t) = r(t0). If t0 = 0 then rearranging the boundary conditions we obtain

‖x′(0)‖ =

∥∥∥∥λC − αx(0)

β

∥∥∥∥ ≤ ‖C‖+ |α|M
|β|

< N,

and thusr(0) < 0. Similarly,

‖x′(1)‖ ≤ ‖D‖+ |γ|M
|δ|

< N,

and thusr(1) < 0. So we see thatt0 ∈ (0, 1).
Now sincer(1) < 0 andr(t0) ≥ 0 we must have a pointt1 ∈ [t0, 1) such thatr(t1) = 0 and

0 ≥ r′(t1) = 2〈x′(t1), x′′(t1)〉
= 2〈x′(t1), λf(t1, x(t1, x

′(t1))〉
> 0,

for all λ ∈ (0, 1] by (2.9), a contradiction.
It is clear to see that once bounds onx andx′ are found, a bound onx′′ follows naturally, as

‖x′′(t)‖ = ‖λf(t, x, x′)‖ ≤ ‖f(t, x, x′)‖
≤ P for t ∈ [0, 1], ‖x‖ ≤M, ‖x′‖ ≤ N,

for someP ≥ 0.
So we see that there exists anR > 0 with

R = max

{
max

{
‖C‖
|α|

, M,
‖D‖
|γ|

}
, N, P

}
+ 1

such that (2.5) holds.
Thus, by Theorem 2.1, the family (2.10)–(2.12) has a solution forλ = 1. Forλ = 1, (2.10)–

(2.12) is equivalent to (1.2)–(1.4) and hence the result follows. �
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Example 2.1.Let x = (x1, x2) andp = (p1, p2). Consider (1.2), (1.4) forn = 2, where

f(t, x, p) = f(t, x1, x2, p1, p2)

=

(
x1e

x2p2 + x2
1p

3
1 + p1

x2e
x2p2 + x2

2p
3
2 + p2

)
, t ∈ [0, 1],

(
x1(0)

x2(0)

)
− 2

(
x′1(0)

x′2(0)

)
=

 1√
2

1√
2

 ,

(
x1(1)

x2(1)

)
+ 2

(
x′1(1)

x′2(1)

)
=

 1√
2

1√
2

 .

There is no growth condition applicable tof and thus the theorems of [11], [21], [4] do not
apply. We will apply Theorem 2.2.

Firstly, for ‖x‖ ≥M , withM to be chosen below, and〈x, p〉 = 0, consider

〈x, f(t, x, p)〉 = x2
1e

x2p2 + (x1p1)
3 + x1p1 + x2

2e
x2p2 + (x2p2)

3 + x2p2

= ex2p2 [x2
1 + x2

2] (sincex1p1 = −x2p2)

> 0 for any positive choice ofM.

For convenience, chooseM = 1, thus (2.8) holds. Now, for‖x‖ ≤ 1, ‖p‖ = N = 2 we have

〈p, f(t, x, p)〉 = p1x1e
x2p2 + x2

1p
4
1 + p2

1 + p2x2e
x2p2 + x2

2p
4
2 + p2

2

≥ 4 + ex2p2 [p1x1 + p2x2]

≥ 2 > 0 for ‖x‖ ≤ 1, ‖p‖ = 2,

thus (2.9) holds.
It is easy to see that (2.6) holds for our choice ofM = 1 andN = 2 and for the given

boundary conditions. Thus Theorem 2.2 is applicable and the BVP has a solution.

Theorem 2.3.Letf be continuous and letM,N be positive constants with

(2.14) 2N2 ≥ −〈x, x′〉, for ‖x‖ ≤M, ‖x′‖ = N.

If (2.8) and (2.9) hold then (1.2), (1.5) has at least one solution.

Proof. Consider the family of BVPs:

x′′ − 2x′ − x = λ[f(t, x, x′)− 2x′ − x], t ∈ [0, 1],(2.15)

x′(0) = 0,(2.16)

x′(1) = 0,(2.17)

for λ ∈ [0, 1] and see that this is in the form (2.1)–(2.3) withg(t, x, x′) = f(t, x, x′)− 2x′ − x.
Let x be a solution to (2.15)–(2.17). By direct calculation, the only solution to (2.15)–(2.17)

for λ = 0 is x = 0, so (2.4) holds.
Now rearranging (2.15) we obtain

x′′ = λf(t, x, x′) + 2(1− λ)x′ + (1− λ)x, t ∈ [0, 1],(2.18)

:= qλ(t, x, x
′).

We show that‖x(t)‖ < M for all t ∈ [0, 1] and allλ ∈ (0, 1]. Considerr(t) = ‖x(t)‖2 for
t ∈ [0, 1] and lett0 ∈ [0, 1] be such thatr(t0) = maxt∈[0,1] r(t) ≥M2.
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6 CHRISTOPHERC. TISDELL AND L IT HAU TAN

If t0 = 0 then the boundary conditions give〈x(0), x′(0)〉 = 0. Therefore, by (2.8) we have

0 < 2
[
〈x(0), f(0, x(0), x′(0))〉+ ‖x′(0)‖2

]
, and so

0 < 2λ
[
〈x(0), f(0, x(0), x′(0))〉+ ‖x′(0)‖2

]
, for λ ∈ (0, 1]

≤ 2
[
〈x(0), λf(0, x(0), x′(0))〉+ 2(1− λ)〈x(0), x′(0)〉+ (1− λ)‖x(0)‖2 + ‖x′(0)‖2

]
= 2

[
〈x(0), qλ(0, x(0), x′(0))〉+ ‖x′(0)‖2

]
= 2

[
〈x(0), x′′(0)〉+ ‖x′(0)‖2

]
= r′′(0),

sor′(t) is strictly increasing fort near 0. Therefore0 = r′(0) < r′(t) for t near 0. This means
thatr(t) is increasing fort near 0, that is,r(0) < r(t) and hencer(0) 6= maxt∈[0,1] r(t).

If t0 = 1 then a similar argument to the case fort0 = 0 gives‖x(1)‖ < M .
If t0 ∈ (0, 1) then an identical argument to the proof of Theorem 2.2 gives‖x(t0)‖ < M .

Hence we have‖x(t)‖ < M for all t ∈ [0, 1].
Consider solutionsx ∈ C2([0, 1]; Rn) with ‖x(t)‖ ≤ M for t ∈ [0, 1]. We now show that

(2.9) imply‖x′(t)‖ < N for all t ∈ [0, 1].
Argue by contradiction by assumingr1(t0) = ‖x′(t0)‖2 − N2 ≥ 0 for somet0 ∈ [0, 1] such

thatmaxt∈[0,1] r1(t) = r1(t0). The boundary conditions giver1(0) < 0 andr1(1) < 0. So we
see thatt0 ∈ (0, 1). Now sincer1(1) < 0 andr1(t0) ≥ 0 we must have a pointt1 ∈ [t0, 1) such
thatr1(t1) = 0 and

0 ≥ r′1(t1) = 2〈x′(t1), x′′(t1)〉
= 2〈x′(t1), qλ(x(t1), x(t1), x′(t1))〉
= λ〈x′(t1), f(t1, x(t1), x

′(t1))〉+ 2(1− λ)‖x′(t1)‖2 + (1− λ)〈x(t1), x′(t1)〉
= λ〈x′(t1), f(t1, x(t1), x

′(t1))〉+ (1− λ)[2N2 − 〈x(t1), x′(t1)〉]
> 0,

for all λ ∈ (0, 1], a contradiction.
Hence we have‖x′(t)‖ < N for t ∈ [0, 1].
Sincea priori bounds are now obtained onx andx′, the a priori bound onx′′ naturally

follows as in the proof of Theorem 2.2.
Hence, by Theorem 2.1, the family (2.15)–(2.17) has a solution forλ = 1, which is identical

to the BVP (1.2), (1.5) and hence the result follows. �

Example 2.2.Consider the scalar BVP (1.2), (1.5) wheref is given by the right-hand side of

(2.19) x′′ = (x+ 1 + x′)ex′
, t ∈ [0, 1].

It is not difficult to show that (2.19) satisfies (2.8), (2.9) and (2.14) forM = 3/2 andN = 2.
Thus, by Theorem 2.3 we conclude that the scalar BVP (2.19), (1.5) has at least one solution.

Theorem 2.4.Letf, g1 andg2 be continuous and letM,N be positive constants such that

(2.20) N > max

{
max
‖x‖≤M

‖g1(x)‖, max
‖x‖≤M

‖g2(x)‖
}
.

If

(2.21) 〈z, g1(z)〉 > 0, 〈z, g2(z)〉 < 0, for all ‖z‖ ≥M,

and (2.8), (2.9) hold, then (1.2), (1.3) has at least one solution.
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Proof. Consider the family of BVPs:

x′′ − 2x′ − x = λ[f(t, x, x′)− 2x′ − x], t ∈ [0, 1],(2.22)

x′(0) = λg1(x(0)),(2.23)

x′(1) = λg2(x(0)),(2.24)

for λ ∈ [0, 1].
Let x be a solution to (2.22)–(2.24). See that, forλ = 0, the above family of BVPs only has

the zero solution.
We show that‖x(t)‖ ≤ M , for t ∈ [0, 1]. Considerr1(t) = ‖x(t)‖2 for t ∈ [0, 1] and let

t0 ∈ [0, 1] be such thatr1(t0) = max t∈[0,1] r1(t) ≥M2.
If t0 = 0 then

0 ≥ r′1(t0) = 2〈x(0), x′(0)〉
= 2〈x(0), λg1(x(0))〉 from (2.11)

> 0

a contradiction.
If t0 = 1 then0 ≤ r′1(1) and a similar arguement to the caset0 = 0 gives another contradic-

tion.
If t0 ∈ (0, 1) such thatr1(t0) ≥M2 then0 = r′1(t0) = 2〈x(t0), x′(t0)〉 and0 ≥ r′′1(t0) with a

contradiction arising by (2.8) as in the proof of Theorem 2.3. Hence we have‖x(t0)‖ < M for
all t0 ∈ (0, 1).

Consider solutionsx ∈ C2([0, 1]; Rn) to (2.22) with‖x(t)‖ ≤ M for t ∈ [0, 1]. We now
show that (2.20) and (2.9) imply‖x′(t)‖ < N for all t ∈ [0, 1].

Argue by contradiction by assumingr(t0) = ‖x′(t0)‖2 − N2 ≥ 0 for somet0 ∈ [0, 1] such
thatmaxt∈[0,1] r(t) = r(t0). By (2.20) we haver(0) < 0 andr(1) < 0 in a similar fashion to
the argument in the proof of Theorem 2.2. So we see thatt0 ∈ (0, 1). Now sincer(1) < 0
andr(t0) ≥ 0 we must have a pointt1 ∈ [t0, 1) such thatr(t1) = 0 and0 ≥ r′(t1) with a
contradiction being reached as in the proof of Theorem 2.3.

Hence we have‖x′(t)‖ < N for t ∈ [0, 1].
Sincea priori bounds are now obtained onx andx′, the a priori bound onx′′ naturally

follows as in the proof of Theorem 2.2.
Hence, by Theorem 2.1, the family (2.15)–(2.17) has a solution forλ = 1, which is just the

BVP (1.2), (1.4) and hence the result follows. �

Remark 2.5. Theorem 2.4 may be generalised to treat (1.2) subject to

x′(0) = g3(x(0), x
′(0), x(1), x′(1))(2.25)

x′(1) = g4(x(0), x
′(0), x(1), x′(1))(2.26)

in the following way.
Let f , g3 andg4 be continuous and letM ,N be positive constants. Suppose eachgi(h, i, j, k)

is bounded on the setD, where

D := {(h, i, j, k) ∈ R4n : ‖h‖ ≤M, ‖j‖ ≤M, (i, k) ∈ R2n}

and

(2.27) N > max

{
sup

(h,i,j,k)∈D

‖g3(h, i, j, k)‖, sup
(h,i,j,k)∈D

‖g4(h, i, j, k)‖

}
.
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8 CHRISTOPHERC. TISDELL AND L IT HAU TAN

If (2.8), (2.9) hold and

〈h, g3(h, i, j, k)〉 > 0, for h 6= 0, (i, j, k) ∈ R3n

〈j, g4(h, i, j, k)〉 < 0, for j 6= 0, (h, i, k) ∈ R3n.

then the BVP (1.2), (2.25), (2.26) has at least one solution.

Remark 2.6. It is also clear that by combining the relevant bounding inequalities used in each
of the Theorems in this section, the treatment of (1.2) subject to any of the following boundary
conditions is possible:

x′(0) = 0, γx(1) + δx′(1) = D, γ/δ < 0,

αx(0)− βx′(0) = C, x′(0) = 0, α/β > 0,

x′(0) = 0, x′(1) = g2(x(0)),

x′(0) = g1(x(0)), x′(1) = 0,

and so on.

Remark 2.7. In Theorems 2.2–2.4 the inequality (2.9) could be reversed and the existence
theorems would still hold. However, for brevity we omit the statement of these new results.

3. ON BVPS WITH SINGULARITIES

In this final section we consider systems of BVPs that may have singularities in the right-hand
side. Consider

(3.1) x′′ = η(t)f(t, x, x′), t ∈ [0, 1],

subject to any of the boundary conditions (1.3)–(1.5). Here1/η : [0, 1] → [0,∞) is continuous
with η > 0 on(0, 1), η is integrable on[0, 1] andη may be singular att = 0 or att = 1. Probably
the most famous type of BVP involving singularities in the right-hand side is the Thomas-Fermi
equation, (n(t) = 1/

√
t, f(t, x, x′) = x3/2) which appears in the study of electron distribution

in an atom [13].
In view of the proof of [17, Theorem 1.5] and [17, Theorem 0.1], in order to prove the

existence of solutions to (3.1) subject to (2.2), (2.3), it is sufficient to show that:
(i) all solutions to

a(t)x′′ + b(t)x′ + c(t)x = λη(t)g(t, x, x′), t ∈ [0, 1],(3.2)

a0x(0) + a1x
′(0) + a2x(1) + a3x

′(1) = λψ1(x(0), x′(0), x(1), x′(1)),(3.3)

b0x(0) + b1x
′(0) + b2x(1) + b3x

′(1) = λψ2(x(0), x′(0), x(1), x′(1)),(3.4)

satisfy
max{‖x(t)‖, ‖x′(t)‖} < R, t ∈ [0, 1],

for someR > 0, independent ofλ ∈ (0, 1]; and
(ii) that for λ = 0, the family (3.2)–(3.4) has only the zero solution. Then, forλ = 1, the
BVP (3.2)–(3.4) will have at least one solution inC1([0, 1]; Rn). (This solution will also be in
C2((0, 1); Rn) because solutions to (3.2) are absolutely continuous on[0, 1] and satisfy (3.2)
almost everywhere.) Above,g and eachψi are as in Section 2.

There are only minor modifications needed in the proofs of Section 2 to obtain thea priori
bounds on solutions to (3.1) and therefore we only present the statement of the new theorems
for brevity.

Theorem 3.1. Let η be as above and letf be continuous. LetM,N be positive constants
satisfying(2.6) If (2.7), (2.8) (2.9)hold then(3.1), (1.4)has at least one solution.
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Theorem 3.2. Let η be as above and letf be continuous. LetM,N be positive constants
satisfying(2.14). If (2.8)and (2.9)hold then(3.1), (1.5)has at least one solution.

Theorem 3.3. Let η be as above and letf, g1 and g2 be continuous. LetM,N be positive
constants such(2.20)holds. If (2.21)holds and(2.8), (2.9) hold, then(3.1), (1.3) has at least
one solution.

Example 3.1. Let f and the boundary conditions be defined as in Example 2.1. Consider
η(t) = 1/

√
t. Then by Theorem 3.1 the singular BVP under consideration has at least one

solutionx ∈ C1([0, 1]; Rn) ∩ C2((0, 1); Rn).

Example 3.2. Let x = (x1, x2) and p = (p1, p2). Consider (3.1), (1.4) forn = 2, where
η(t) = 1/

√
t

f(t, x, p) = f(t, x1, x2, p1, p2)

=

(
(x1 + p1)k(t, x1, x2, p1, p2)

(x2 + p2)k(t, x1, x2, p1, p2)

)
, t ∈ [0, 1].

There is no growth condition applicable tof and thus the theorems of [11], [21], [4], [19], [20]
do not apply.

We claim that the singular BVP has a solution ifk is continuous and satisfies

k(t, x1, x2, p1, p2) > 0, for all (t, x1, x2, p1, p2) ∈ [0, 1]× R2 × R2,

for someM ≤ N such that (2.6) and (2.7) hold.
We will apply Theorem 3.1.
Firstly, for ‖x‖ ≥M and〈x, p〉 = 0, consider

〈x, f(t, x, p)〉 = k(t, x1, x2, p1, p2)
[
x2

1 + x2
2 + x1p1 + x2p2

]
= k(t, x1, x2, p1, p2)[x

2
1 + x2

2] (sincex1p1 = −x2p2)

> 0 for any positive choice ofM.

Thus (2.8) holds. Now, for‖x‖ ≤M, ‖p‖ = N we have

〈p, f(t, x, p)〉 = k(t, x1, x2, p1, p2)
[
p1x1 + p2x2 + p2

1 + p2
2

]
≥ k(t, x1, x2, p1, p2)

[
N2 + p1x1 + p2x2

]
> 0 for ‖x‖ ≤M, ‖p‖ = N,

for any choice ofN such thatN ≥M , thus (2.9) holds.
Thus by Theorem 3.1 the singular BVP under consideration has at least one solutionx ∈

C1([0, 1]; Rn) ∩ C2((0, 1); Rn).
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