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ABSTRACT. In this short note, we approximate Dilogarithm function, defined bydilog(x) =∫ x

1
log t
1−t dt. Letting

D(x, N) = −1
2

log2 x− π2

6
+

N∑
n=1

1
n2 + 1

n log x

xn
,

we show that for everyx > 1, the inequalities

D(x, N) < dilog(x) < D(x,N) +
1

xN

hold true for allN ∈ N.
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Definition. The Dilogarithm functiondilog(x) is defined for everyx > 0 as follows [5]:

dilog(x) =

∫ x

1

log t

1− t
dt.

Expansion.The following expansion holds true whenx tends to infinity:

dilog(x) = D(x, N) + O

(
1

xN+1

)
,

where

D(x, N) = −1

2
log2 x− π2

6
+

N∑
n=1

1
n2 + 1

n
log x

xn
.
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Aim of Present Work.The aim of this note is to prove that:

0 < dilog(x)−D(x, N) <
1

xN
(x > 1, N ∈ N).

Lower Bound.For everyx > 0 andN ∈ N, let:

L(x, N) = dilog(x)−D(x, N).

A simple computation, yields that:

d

dx
L(x, N) = log x

(
x

1− x
+

N+1∑
n=0

1

xn

)
< log x

(
x

1− x
+

∞∑
n=0

1

xn

)
= 0.

So,L(x, N) is a strictly decreasing function of the variablex, for everyN ∈ N. Considering

L(x, N) = O
(

1
xN+1

)
, we obtain a desired lower bound for the Dilogarithm function, as follows:

L(x, N) > lim
x→+∞

L(x, N) = 0.

Upper Bound.For everyx > 0 andN ∈ N, let:

U(x, N) = dilog(x)−D(x, N)− 1

xN
.

First, we observe that

U(1, N) =
π2

6
−

N∑
n=1

1

n2
− 1 = Ψ(1, N + 1)− 1 ≤ π2

6
− 2 < 0,

in whichΨ(m, x) is them-th polygamma function, them-th derivative of the digamma function,

Ψ(x) = d
dx

log Γ(x), with Γ(x) =
∫∞

0
e−ttx−1dt (see [1, 2]). A simple computation, yields that:

d

dx
U(x, N) = log x

(
x

1− x
+

N+1∑
n=0

1

xn

)
+

N

xN+1
.

To determine the sign ofd
dx
U(x, N), we distinguish two cases:

(1) Supposex > 1. Since,log x
x−1

is strictly decreasing, we have

N ≥ 1 = lim
x→1

log x

x− 1
>

log x

x− 1
,

which is N
log x

> 1
x−1

or equivalently N
xN+1 log x

>
∑∞

n=N+2
1

xn , and this yields that
d
dx
U(x, N) > 0. So,U(x, N) is strictly increasing for everyN ∈ N. Thus,U(x, N) <

limx→+∞ U(x, N) = 0; as desired in this case. Also, note that in this case we obtain

U(x, N) > U(1, N) = Ψ(1, N + 1)− 1.

(2) Suppose0 < x < 1 and N − log x
x−1

≥ 0. We observe that1 < log x
x−1

< +∞ and∑N+1
n=0

1
xn = 1−xN+2

xN+1(1−x)
. Considering these facts, we see thatd

dx
U(x, N) andN − log x

x−1

have same sign; i.e.

sgn

(
d

dx
U(x, N)

)
= sgn

(
N − log x

x− 1

)
.
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Thus,U(x, N) is increasing and so,

U(x, N) ≤ lim
x→1−

U(x, N) = Ψ(1, N + 1)− 1 ≤ π2

6
− 2 < 0.

Connection with Other Functions.Using Maple, we have:

D(x, N) = −1

2
log2 x− π2

6
+

1

N2xN
+

log x

NxN
− log

(
x− 1

x

)
log x

+ polylog

(
2,

1

x

)
− log x

xN
Φ

(
1

x
, 1, N

)
− 1

xN
Φ

(
1

x
, 2, N

)
,

in which

polylog(a, z) =
∞∑

n=1

zn

na
,

is the polylogarithm function of indexa at the pointz and defined by the above series if|z| < 1,

and by analytic continuation otherwise [4]. Also,

Φ(z, a, v) =
∞∑

n=1

zn

(v + n)a
,

is the Lerch zeta (or Lerch-Φ) function defined by the above series for|z| < 1, with v 6=
0,−1,−2, . . . , and by analytic continuation, it is extended to the whole complexz-plane for

each value ofa andv (see [3, 6]).
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