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Abstract

Sharp bounds are obtained for expressions involving Zeta and related functions
at a distance of one apart. Since Euler discovered in 1736 a closed form ex-
pression for the Zeta function at the even integers, a comparable expression for
the odd integers has not been forthcoming. The current article derives sharp
bounds for the Zeta, Lambda and Eta functions at a distance of one apart. The
methods developed allow an accurate approximation of the function values at
the odd integers in terms of the neighbouring known function at even integer
values. The Dirichlet Beta function which has explicit representation at the odd
integer values is also investigated in the current work.

Cebysev functional bounds are utilised to obtain tight upper bounds for the
Zeta function at the odd integers.

2000 Mathematics Subject Classification: Primary: 26D15, 11Mxx, 33Exx; Sec-

ondary: 11M06, 33E20, 65M15.

Key words: Euler Zeta function, Dirichlet beta, eta and lambda functions, Sharp
bounds, CebySev functional.

This paper is based on the talk given by the author within the “International
Conference of Mathematical Inequalities and their Applications, 1", December 06-
08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/
conference |
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The present paper represents in part a review of the recent work of the author
in obtaining sharp bounds for expressions involving functions at a distance of
one apart. The main motivation for the work stems from the fact that Zeta
and related functions are explicitly known at either even function values (Zeta,
Lambda and Eta) or at odd function values as for the Dirichlet Beta function.
The approach of the current paper is to investigate integral identities for the
secant slope fon () and 5 (x) from which sharp bounds are procured. The Bounds for Zeta and Related
results forn (z) of Section3 are extended to the¢(x) and A (=) functions be- Functions
cause of the relationship between them. The sharp bounds procuredifxthe

for ¢ (x) are obtained, it is argued, in a more straightforward fashion than in the C e

earlier work of Alzer P]. Some numerical illustration of the results relating to

the approximation of the Zeta function at odd integer values is undertaken in Jill= PR

Sectiord. Contents
The technique for obtaining the(x) bounds is also adapted to developing «“ b

the bounds for5 (z) in Sectionb.

The final Sectiors of the paper investigates the use of bounds forGie 4 >
bySev function in extracting upper bounds for the odd Zeta functional values

Go Back
that are tighter than those obtained in the earlier sections. However, this ap-
proach does not seem to be able to provide lower bounds. Close
Quit
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The Zeta function

(2.1) ((x) = %, x>1

n=1

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler
(1707-1783) for reat who proved the identity

Bounds for Zeta and Related

1 -1 Functions
(2.2) C(l‘) = H (1 - —m) ) x>1, P. Cerone
» p
wherep runs through all primes. It was Riemann who allowetd be a complex Title Page

variablez and showed that even though both sides2of)(and @.2) diverge for

Contents

Re(z) < 1, the function has a continuation to the whole complex plane with
a simple pole at = 1 with residue 1. The function plays a very significant A 44
role in the theory 01_‘ t_he distribu?ion of primes (se@,[_[ I [ _], [15] and [ ])_. < >
One of the most striking properties of the zeta function, discovered by Riemann
himself, is the functional equation Go Back

— Close
(2.3) C(z) = 2°7* 'sin <—) (1 —2)C(1—2)

2 Quit
that can be written in symmetric form to give Page 5 of 42
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In addition to the relationa.3) between the zeta and the gamma function,

functions are also connected via the integraig [

1 o tr=1dt
(2.5) () = r(az)/o !
and

1 o tr=1dt
where

(2.7) Cz):=T(z) (1-2""") and I'(z)= /000 et

(2.8) N B

where B,, (x) are the Bernoulli polynomials (after Jacob BernoulB), (0) =

these
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B,, are the Bernoulli numbers. They occurred for the first time in the formula

[1, p. 804]

“ B, 1) — B,
29 Y k= “<mn++)1 1 am=1,23,... .
k=1
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One of Euler’'s most celebrated theorems discovered in 1736 (Institutiones Cal-
culi Differentialis, Opera (1), Vol. 10) is

(2.10) C(2n) = (=1)" " =———Byy; n=1,23,....

The result may also be obtained in a straight forward fashion fta6) énd a
change of variable on using the fact that

n—1

o0 2
n—1

from Whittaker and Watsorv[, p. 126].
We note here that
((2n) = A, 7",

where

An:(—l)n_l'L—i—iﬂA

(2n +1)! (25 + 1)1 "7

andA; = 3.
Further, the Zeta function for even integers satisfy the relation (Borwein et
al. [4], Srivastava !1])

—1n—-1

otom) = (n+3) Y ctic-20). nem ()

Despite several efforts to find a formula fg2n+ 1), (for example P2, 27)),
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the odd integer values. Several series representations for the((@lue- 1)
have been proved by Srivastava and co-workers in particular.
From a long list of these representations),[2 7], we quote only a few

Hypi1 —logm
(2n + 1)!

n—1 k o
C(2k +1) (2k —1)!  ((2k)
2
+; 2n—2k+1 T ;(2n+2k+1)! 22k |7

(212) ¢(2n+1) = (=1)" x> {

Bounds for Zeta and Related
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27T 2n el k 1k C(Qk) P. Cerone
2.13) ¢(2n+1) = (=1)" '
(213) ¢(2n+1) = (-1) QW_l [Z o k)]
00 B C(2k) Title Page
+ kz_; 2n + 2k 22k |7 Contents
and <44 44
n—1 _ 4 | 4
(2m)*" (=D 'k ¢(2k+1)
2.14 2 1) =(-1)"
( ) C( n + ) ( ) (2n _ 1)22n +1 ; (2n — 2%k + 1)[ 2k Go Back
s k)! C(2k) Close
=1,2,3,....
+;;o 2n+2k—|— 1)! 2%]’ nE b Quit
There is also an integral representationddn + 1) namely, Page 8 of 42
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whered = 1 or% ([1, p. 807]). Recently, Cvijow and Klinkowski [.7] have
given the integral representations

(2.16)  C(2n+1)

(27T)2n+1

= (=" 25 (1 —272) (2n + 1

5
)! /0 Bonyi (t) tan (mt) dt,

and

7.‘_2714-1

5
(2.17) ¢@2n+1)=(-1)"- (1= 2@y (2n)] /0 Ey, (t) csc (mt) dt.

Both the series representatior’s1(? — (2.14) and the integral representa-
tions .15 — (2.16 are however both somewhat difficult in terms of computa-
tional aspects and time considerations.

We note that there are functions that are closely relatéd.tgp. Namely, the
Dirichletn (-) and (-) functions given by

(2.18) (@) fo =y _ 1 /Oo (A
. xTr) = = T

g e I'(z) /), e+1"
and

- 1 1> !
(2.19) A(x) = = = / dt, x>0
(z) HZ:O (2n+1) I'(z) J, et—et

These are related ©(z) by
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satisfying the identity

(2.21) C(x)+n(x) =2 (x).

It should be further noted that explicit expressions for bothy Gfn) and
A (2n) exist as a consequence of the relatiog t@n) via (2.20).
The Dirichlet beta function or Dirichlet —function is given by 14]

o _1 n
n
n=0 Bounds for Zeta and Related
Functions

whereg (2) = G, Catalan’s constant.
It is readily observed from2(19 that 5 (=) is the alternating version of P. Cerone
A (z) , however, it cannot be directly relatedd¢d@z) . It is also related to; (z)

in that only the odd terms are summed.

. .. . . Title Page
The beta function may be evaluated explicitly at positive odd integer values
of x, namely, Contents
E, N 2n+1 44 44
2.23 M+ 1) = (—1)" —=2» (_> 7
( ) B(2n+1)=(-1) 2 2n)l \2 ) ,
whereF,, are the Euler numbers generated by o Back
h = Close
sec ( 629” +1 Z .
Quit

The Dirichlet beta function may be analytlcally continued over the whole
complex plane by the functional equation

2 z . Tz J. Ineq. Pure and Appl. Math. 6(5) Art. 134, 2005
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The functiong (z) is defined everywhere in the complex plane and has no sin-
gularities, unlike the Riemann zeta functiah(s) = > >°, -&., which has a
simple pole at = 1.

The Dirichlet beta function and the zeta function have important applications
in a number of branches of mathematics, and in particular in Analytic number
theory. See for example], [13] —[17].

Further,5 (z) has an alternative integral representatiof p. 56]. Namely,

1 00 2f:z:—l
— dt > 0. Bounds for Zeta_ and Related
ﬁ (x) o (I) /0 cosh (t) ’ x Functions
That is, P. Cerone
I i
(2.24) B(z) = / ———dt, x>0 Title Page
F(@)Jo ete Contents
The functiong (z) is also connected to prime number theoty][which may pp D
perhaps be best summarised by p S
_ _ p—1 -1
B(z) = H (1 —pfx) g H (1 —fo) t= H (1 — (—1)p2 p’x) , Go Back
p prime p prime p pdd
p=1mod 4 p=3mod 4 prime Close
where the rearrangement of factors is permitted because of absolute conver- Quit
gence. Page 11 of 42
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Lemma 2.1. The following identity involving the Zeta function holds. Namely,

(2.25) /OOO (etf1)2dt:0<x+1)g(x+1)—xc*(x)g(a;), v >0,

whereC (x) is as given by4.7).
Theorem 2.2. The Zeta function satisfies the bounds
b(x
(1 -b@) )+ D <)
b(z)

< (1-b@)¢ () + 2,

(2.26)

x>0,

where

1
b(z) = o1

Theorem 2.3. The Zeta function satisfies the bounds

(1-b@)c + " <

< (1 =0(2))C(0) + 55—
=U"(x)

(2.27)

(2.28)

whereb (z) is as given byZ.27),

0 (N z) =" A o
7 1—=A
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and )
= —
z

with z the solution of
z=1+ e~ R,
The% on the right hand side is the best constant. The best constant for the
lower bound was shown to be2 — % by Alzer [?], on making use of Lemma
2.1and Theoren?.2, rather than.
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The following lemma was developed in Cerofi¢ fo obtain sharp bounds for

the eta functiony (x) as given in Theorer.3.

Lemma 3.1. The following identity for the eta function holds. Namely,

1 o r
B1) Q(x):= F(x—i—l)/o (etil)th:n(x—l—l) —n(x), x>0.
Proof. From .19,
ol (z)n (z) = /OOO :f:dt, x>0

. Tx (e%e] txet
= lim + |t
T—oo el +1 o (et+1)

and so we have

o] ettx
(3.2) Iz +1)n(z) = /0 R
Thus, from .18 and @.2),

r(x+1)[n(x+1)—n(a;)]:/Oooefj_l[1— ¢ }dt

[o¢] ta?
= —at
/o (et 4+ 1)

giving (3.1).
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The following theorem presents sharp bounds for the secant slapefor
a distance of one apart.

Theorem 3.2. For real numbers: > 0, we have

d
(3.3) Y <nlx+1)—n(x) < 5ot
with the best possible constants
(3.4) c=2In2—-1=0.3862943... and d=1.

Proof. Let = > 0. We first establish the first inequality ir8.3). From the
identity (3.1) proved in LemmaB.1, it is readily evident that < @ (z). We
further consider

00 dt o] —2t
(35) J= / B / .
o (et+1) o (e7t+1)
Thus, after some obvious simplifications
1 2 -1 1
(3.6) J:/ 4 2du:/ l —du=1In2— .
o (u+1) 1u 2

Now, let us examine
2°1Q (z) — (2In2 — 1).
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That is, from 8.1), (3.5 and (3.6),
(B.7) T(z+1)[2"7'Q(z) —2J]

x+1 > tfﬂ _ . €T - —dt
=2 /0 —(et+1)2dt 2-T( +1)/0 R
B ® e 2 [(2t)" =T (z + 1))
i / o
- [etere,,

0 (1 + 6_%)2

:/Ooou(t,x)v(t)dt,

where
@8  wlta)=c'[F T+, o@)=(1 +e-£)_2.

The functionw (t) is strictly increasing for € (0, ) .
1

Now, letty = (I'(z + 1))= , then for0 < t < ty, u(t,z) < 0 andv (t) <
v (to) . Also, fort > to, u(t,z) > 0 andv (t) > v (ty). Hence we have that
u(t,z)v(t) > u(t,z)v(to) fort > 0 andt # ty. This implies that

/mu(t,x)v(t)dt > v(to)/ooe_t [t" =T (z+1)]dt = 0.
0 0
Hence from 8.7) and (3.6)

(3.9) Q () >
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Now for the right inequality.
We have from 8.4) that

(2t)" e~ 2
(1+ e—'f)2
_ / T et (1w (1] dt,

wherev (t) is as given by §.8). We make the observation that't” is positive
and1 — v (¢) is strictly decreasing and positive foe (0, co) , which naturally
leads to the conclusion that

F@+&)ﬂ—2”%ﬂ@]zfuﬂﬂj—2lw dt

(3.10) Q(z) < % v > 0.

In summary we note thaB(9) and @.11) provide lower and upper bounds
respectively forQ) (z) . That the constants irB(3) are best possible remains to
be shown.

Since 3.3 holds for all positiver, we have

(3.11) c<2"MQ(z) < d.

Now, from 3.1), we have

(3.12) 21 () = — 2 / T
Cz+1)Jo (14et)

and so
2t

(313)  lm21Q (1) =2 /0 (1;

dt=2-J=2In2— 1,
+et)
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where the permissable interchange of the limit and integration has been under-

taken and we have use8.p) — (3.6).
Now, since for) < w < 1 the elementary inequality— 2w < (1 + w)_2 <
1 holds, then we have

1—-2'< ;2 < 1.
(1+et)
Thus, from 8.12),
9 z+1
(3.14) 1-2- (5) < 2"°HQ (z) < 1,
where we have utilised the fact that,
e r 1
(3.15) / et dt — %
0 "
Finally, from (3.14) we conclude that
(3.16) lim 2°7Q (z) = 1.

r—00

From 3.11), (3.13 and 3.16 we havec < 2In2 — 1 andd > 1 which
implies that the best possible constants 33 are given byc = 2In2 — 1
andd = 1. O

Corollary 3.3. The bound

d+c d—c
(3.17) 7}(31:+1)—77(95)—2m+2 < Serz x>0

holds, where: = 2In2 — 1 andd = 1.
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Proof. From 3.3, let

L(f’?):n(x)+21+1 and U(:v):n(x)+2i1
then
L(z)<n(z+1) <U(z)
and so
U@L@ ) UDELE V@ -LE

Remark 1. The form of 8.17) is very useful since we may write

d—+c
2:p+2

n(x+1) =nr)+ +E(z),

where|E (z)| < ¢ for
In (ﬁ)

4e
In2

Corollary 3.4. The eta function satisfies the bounds

(3.18) x>zt =

(3.19) Ly(z) <n(z+1)<Uy(z), x>0,
where

c
(320) Ly(z)=n(z+2)— 5ot and Uy (x)=n(x+2)— Serz
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Proof. From (3.6)

d
~ et <nx)—mx+1)< ~ e
Replacer by = 4+ 1 and rearrange to giv&(19 — (3.20. O

Remark 2. We note that_ (-) and U (-) will be used to denote the lower and
upper bounds respectively. If the bounds involve a previous value at a distance
of one away from the function that is bounded, then no subscript is used. If

it involves a subsequent value then a subscrig of used. This is shown in Bounds fOLZetft% and Related
Corollaries3.3and3.4above for the eta function. No distinction in the notation unetons
is used when referring to other functions. P. Cerone
Given the sharp inequalities for(x + 1) — n (x) in (3.3) — (3.4), then we _
may readily obtain sharp bounds for expressions involving the zeta function and Title Page
the lambda function at a distance of one apatrt. Contents
Corollary 3.5. For real numbers: > 0 we have pp >
1 b
(3.21) <ln2—§>b(x) <C@+1)—(1-b(z)((z) < % b d
Go Back

where

] Close

Proof. From TheorenB.2 and @.20) giving a relationship between(z) and Page 20 of 42

¢ () we have
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and so from 8.3) and 3.4)

© b)) <t 1)~ (b)) < o b(a).

O

Remark 3. Cerone et al. {] obtained the upper bound ir8(21) and a coarser

lower bound of@ as presented in26. Alzer [3] demonstrated that the

constantsn 2—1 and1 in (3.21) are sharp. The sharpness of the constantas

obtained by Alzer on utilising a different approach, other than the sharpness of

the constant/ = 1 in (3.4) via the eta function and henegin (3.21).
Corollary 3.6. For real z > 0 we have
1—
A +1) - (&)m
S

1 —(z+1
(3.23) (ln2—§)b(f) (1—274) 1—b(x+1)
b(x)

<
< —= - (1—27ty

whereb (z) is as given byJ.22).

Proof. Again utilising TheorenB.2 and from @.20) and ¢.21) we have, after
some algebra,

(3.24) n(z)=1-b(x)A(z)
and so from 8.3) and 3.4)

2In2 —1
W<77($+1)—77($)

1
9z+1 ’

—(1=bE+1)A(z+1) = (1—b(x)A(z) <
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Division by 1 — b (z + 1) and some simplification readily producés43. O

The advantage of having sharp inequalities suctB&3,((3.21) and @3.23
involving function values at a distance of one apart is that if we place
2n, then sincel (2n) is known explicitly, we may approximate(2n + 1) and
provide explicit bounds. This is so far(-) and A (-) as well because of their
relationship ta( (-) via (2.20 — (2.21).
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In what follows, we investigate some numerical results associated with bound-
ing the unknowrt (2n + 1) by expressions involving the explicitly known2n) .
The following corollaries hold.

Corollary 4.1. The bound

In2

(4.1) (Clz+1)=(1=b())¢(2) = —-b(2)

Bounds for Zeta and Related
Functions

holds, wheré (z) is as given by3.2).

P. Cerone
Proof. Let
1 Title P
(4.2) L(z)=(1—b(x))C(z) + <ln2 - -) b(z), and e rage
2 Contents
b
U(x):(l—b(x))g“(x%l—% <« >
then from B.21) we have \ ’
Go Back
L(x)<C(z+1)<U(x). 0=ac
Close
Hence .
Quit
Ve L) pgyqy YT L) Ule) — L) Page 23 of 42
2 2 2
which may be expressed as the stated regul) on noting the obvious corre- 3. Ineq, Pure and Appl. Math. 6(5) Art. 134, 2005

spondences and simplification. N I
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Remark 4. The form §.1) is a useful one since we may write

In2
(4.3) Cla+1) = (1=b(@))¢ (x) + b (@) + B x).,
where
|E (z)| <e
for
. 1—In2
x>z :=In ( ) In 2.
Bounds for Zeta and Related
1n2 e Functions
That is, we may approxmate(a; +1)b ( —b(z)) ¢ () + %520 () within an
accuracy of: for x > z* P. Cerone
We note that both the result of CorollaBy5and Corollary4.1 as expressed _
in (3.21) and @.1) respectively rely on approximating(z + 1) in terms of Title Page
¢ (z) . The following resultinvolves approximating = + 1) interms of¢ (z + 2) , Contents

the subsequent zeta values within a distance of one rather than the former zeta

values. <« >
Theorem 4.2. The zeta function satisfies the bounds < >
(4.4) Ly(z) <C(z+1) <Uy(x), Go Back
where Close
x Quit
¢ (z+2) — Azt
(%.5) Lz (@) = 1—b(x+ 1) and Page 24 of 42

1
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Proof. From 3.21) we have

1 b
0< (w2 3) 0@ < ¢t ) - (- b(a) ¢ (o) <
and so
b 1
—% <(1=b(z)C(x)—C(xz+1) < — (ln2— 5) b(z)
to produce Bounds for Zeta and Related
Functions
b(x) 1
C(CE+1) - T < (1 _b<x))C(x) < <(ZL‘—|—1) —|In2- 5 b<x) P. Cerone
A rearrangement and changeoto x + 1 produces the stated resuit.4) — .
Title Page
(4.9). O
. . . Contents
Remark 5. Some experimentation using the Maple computer algebra package
indicates that the lower boundt, (z) is better than the lower bound (z) for A 44
x > x, = 1.30467865 ... and vice versa for < x,. In a similar manner the < >
upper bound’; (z) is better thanU (z) for z < x* = 3.585904878 ... and vice
versa forx > x*. Go Back
The following corollary is valid in whicl{ (x + 1) may be approximated in Close
terms of¢ (x + 2) and an explicit bound is provided for the error. Quit
Corollary 4.3. The bound Page 25 of 42

1
C (.ZU + 2) B (ln 2 B 5) b <$ + 1) < 1 — ln 2 . b (.I' + 1) J. Ineq. Pure and Appl. Math. 6(5) Art. 134, 2005
1—9% (1- + 1) - 2 1—5 (m + 1) http://jipam.vu.edu.au
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holds, wheré (z) is as defined by3(22).

Proof. The proof is straight forward and follows that of Corollary with L (z)
andU (z) replaced by, () andUs, (x) as defined by4.5).

Corollary 4.4. The zeta function satisfies the bounds

(4.7)

]

max{L (z),Ls ()} < ((xr+1) <min{U (z),Us (x)},

whereL (z), U (x) are given by 4.2) and L, (z) , Us () by @.5).

Table 1 provides lower and upper bounds {aen + 1) forn = 1,...,5,

utilising Corollaries3.6 and4.3 for z = 2n. We notice thatl, (2n) is better
thanZ (2n) andU, (2n) is better thar/ (2n) only forn = 1 (see also Remark

Bounds for Zeta and Related
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5). Tables 2 and 3 give the use of Corollarieg and4.3for x = 2n. Thus, the Title Page

table provideg (2n + 1), its approximation and the bound on the error. Contents
44 44

n | L(2n) Ly (2n) ¢(2n+1) U (2n) U, (2n)

1| 1.161005104 1.179377107 1.202056903 1.263289378 1.230519243 < 4

2 | 1.023044831 1.034587831 1.036927755 1.043501685 1.044816259 Go Back

3 | 1.004260588 1.008077971 1.008349277 1.009131268 1.010513311 ——

4 | 1.000897239 1.001976919 1.002008393 1.002100583 1.002578591

5 | 1.000204892 1.000490588 1.000494189 1.000504847 1.000640564 Quit

Table 1. Table of. (2n), Ly (2n), ¢ (2n + 1), U (2n) andU; (2n) as given by 4.2)

Page 26 of 42
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C(2n+1)

U(2n)+L(2n)

U(2n)—L(2n)

1.202056903

2
1.212147241

2
0.0511421366

1.036927755

1.033273258

0.010228842731

1.008349277

1.006695928

0.002435339836

1.002008393

1.001498911

0.000601672195

QB WNFB

1.000494189

1.000354870

0.0001499769401

U(2n)—L(2n)
2

U(2n)+L(2n)

Table 2. Table of (2n + 1), its approximation—=—5—= and its bound
forn=1,...,5whereU (2n) andL (2n) are given by 4.2).

C(2n+1)

Uz(2n)+L2(2n)

Uz (2n)—L2(2n)

1.202056903

2
1.202056903

2
0.02557106828

1.036927755

1.039702045

0.00511421366

1.008349277

1.009295641

0.001217669918

1.002008393

1.002277755

0.000300836097%

QW NP

1.000494189

1.000565576

0.000074988470(

Uz(2n)—L2(2n)
2

Table 3. Table of (2n + 1), its approximatio
forn=1,...,5whereU; (2n) andLs (2n) are given by 4.5).

Us(2n)+L2(2n)
2

222222 and its bound

D
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The following lemma was developed in Cerofi¢ fo obtain sharp bounds for
the Dirichlet beta function; (z) at a distance of one apart as presented in The-
orem5.2.

The techniques closely follow those presented in Se@ifor the eta func-
tion.

Bounds for Zeta and Related

Lemma 5.1. The following identity for the Dirichlet beta function holds. Namely, Functions

2 > et P. Cerone
5.1 P(x):= ttdt=pB(x+1) — [ (x). '
6 PO =y | e =) - 5@
The following theorem produces sharp bounds for the secant slgpérot Title Page
Theorem 5.2. For real numberse > 0, we have Contents
c* d* 44 44
with the best possible constants
Go Back
1
(5.3) ¢ =3 G - E) — 0.85619449 ... and d* = 2. Close
Quit

The following corollaries were also given in Cerorig \hich prove useful
in approximating3 (2n) in terms of knowng3 (2n + 1) . This is so sinceq.2) Page 28 of 42
may be written as

J. Ineq. Pure and Appl. Math. 6(5) Art. 134, 2005
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where

c* d*
et and U (z) =p0(x)+ et

(5.5) L(z) =0 (x)+
Corollary 5.3. The bound

ds+c* ds —c*
9.3zl < 9. 3a+1

(5.6) Blz+1)—p6(x)

holds where* = 3 (2 — 1) andd* = 2.

Remark 6. The form §.6) is useful since we may write
d* + c*

Bla+1)= @)+ 55

+E(z),
where|E (x)| < ¢ for

. In(55)

Corollary 5.4. The Dirichlet beta function satisfies the bounds

(5.7) Ly (z) <B(z+1) < Uz (),
where
(58)  Ly(x)=f(e+2) ~ o and Ua(¢) = Bla +2) - 3;2.
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Remark 7. Some experimentation with the Maple computer algebra package

indicates that the lower bount, (z) is better thanl (x) for z > z, =~ 0.65827
and vice versa for: < z,. Similarly, U (z) is better thanl, (z) for x > z* =
3.45142 and vice versa for < z*.

Corollary 5.5. The Dirichlet beta function satisfies the bounds

max{L (z),Ls ()} < B(x+1) <min{U (x),Us ()},

whereL (x), U (z) are given by .5 and L, (z) , U, (x) by (5.8).

Remark 8. Table 4 provides lower and upper bounds fa2n) forn = 1,...,5
utilising Theoren®.2and Corollary5.4withx = 2n—1. That s, the bounds are

in terms of3 (2n — 1) and 3 (2n + 1) where these may be obtained explicitly

using the resultZ.23).

L(2n—1)

Ly (2n —1)

8 (2n)

U(2n—1)

Uy (2n—1)

.8805308843

.8948720722

9159655942

1.007620386

9372352393

9795164487

9879273754

.9889445517

9936375043

9926343940

9973323061

9986400132

9986852222

19989013123

9991630153

9996850054

9998480737

9998499902

9998593395

9999061850

OB WNER3

9999641840

9999830849

9999831640

9999835544

9999895417

Table 4: Tableofl (2n — 1), Ly (2n— 1), 5(2n),U (2n — 1) and

Uy (2n — 1) asgivenby%.5 and 6.8 forn =1,...,5.
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It is instructive to introduce some techniques for approximating and bounding
integrals of the product of functions.
The weightedCebySev functional defined by

(6.1) T(f, 9;p) = M(fg;p) = M (f;p) M (g;p),
where
Bounds for Zeta and Related
b b Functions
©2  P-M{fp)= [ p@h@d, P [ p@d
a a P. Cerone
the weighted integral mean, has been extensively investigated in the literature
with the view of determining its bounds. Title Page
There has been much activity in procuring boundsTqif, g; p) and the Contents
interested reader is referred td.[The functionall’ (f, g; p) is known to satisfy
a number of identities. Included amongst these, are identities of Sonin type, « dd
namely < >
(6.3) P-T(f,9p) Go Back
b Close
— [ p®1F @)= )lo ()~ M(gip)di, fory aconstant oo
The constant € R but in the literature some of the more popular values have Page 31 of 42
been taken as Ads ;
0, 2507 (450 anda(rin). R
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where—oco < § < f(t) < A < oofort € [a,b].
An identity attributed to Korkine viz

T(f,9:p)

5[ [rore @ -0 6w

may also easily be shown to hold.

Here we shall mainly utilize the following results bounding Bebysev
functional to determine bounds on the Zeta function. (Sg¢éf more general
applications to special functions).

From (6.1) and ©.3) we note that

(6.4) P?.T

—g(y)) dzdy

65)  P-|T(f.g:p)] = / p(@) (f (2) —7) (g () — M (g; ) de

to give

mf Ilf ()

A 2 p(x — M (g;p)|dz,

(6.6) P-|T(f,g:p)| < (f;p(x)(f(x)_M(f;p))def

([ D) (0 0) — M(gip)dr)

where

6.7) /

b
M (h; p))? da =/ p () B2 (z) di — P - M (s p)
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and it may be easily shown by direct calculation that,

68 Pt [ [ )0 -2t = [0 (G0 - M)

_ The following result was obtained by the autha} by utilising the above
Cebysev functional bounds.

Theorem 6.1. For a > 1 the Zeta function satisfies the inequality

o L [r@a-1) ]®
where
(6.10) K= [WQ (1 — 7;—;) —7C (3)} T 0.319846901 . . .

Theorem 6.2.For o > 1 andm = |« the zeta function satisfies the inequality

(6.11) [T(a+1)¢(a+1)=2"T(m+1)¢(m+1)¢(a—m+1)
<23 LB [T (20— 2m+1) — T2 (a —m +1)] 7,

[NIES

where
(6.12) E*=2""T(2m+1)[A(2m) — XA (2m + 1)]
—%FQ(m+1)C2(m+1)7

with A () given by £.19).
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Proof. Let

(6.13)

wherem = |a] .
Make the associations

615)  § M(fip) =} [ o= 3T Om+ ¢ (mo+ ).

M (gip) = %/ e 22 My = 2" (0 —m + 1).
0

\

Thus, from 6.1) — (6.3), we have

P-T(f,g;p)=T(a+1)((a+1)=2""T(m+1)((m+1){(a —m+1)

:/Ooe_g(:pa_m—y)< o —F<m+1)<(m+1))dx.

ez —e 3 2
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Now, from (6.6) and (.7), the best value fory when utilising the Euclidean
norm is the integral mean and so we have frénby,

T(a+1)¢(a+1) =2 (m+ 1) (m—+1)¢ (0 —m+1)]

< </OOO e™F (27 = 207 (0 — m + 1)) dx)

([ (g - ey )

%—e_g 2

2

=

(SIS

Bounds for Zeta and Related

Functions
That is, on usingq.7), we have P. Cerone
(6.16) |I'(a+1)C(a+1)=2°""T(m+1){(m+1){(a—m+1)| 1 Title Page
< Er2n {/Oo efg$2(a7m)dx _ 92(a=m)+12 (a —m+ 1):| : , Contents
’ «“ bp
where
) 4 | J
R 2m r 1 1
(6.17) Efn_/ e_zzx—”dx—Q( (m+1)¢(m+ )) . Go Back
0 (ei — 6*5) 2
Close
Now Quit
oS m 2
(6.18) / e 2 (%) dx Page 35 of 42
0 ez —e 2
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s o0 2 1
— Zn/ e( 5 )xx2mdx
0

L 22mHIT (2m 4+ 1)
= Z n 21
(2n+1)

=2""T (2m + 1 i

n=1

2n
(2n 4 1)*"*!
=2""T (2m + 1) [\ (2m) — XA (2m + 1)],
where (+) is as given by Z.19), where we have use®.(l5 and have under-
taken the permissable interchange of summation and integration.

Substitution of 6.18 into (6.17) and using §.16 gives the stated results
(6.11) and 6.12 after some simplification. O]

The following corollary provides upper bounds for the zeta function at odd
integers.

Corollary 6.3. The inequality

(6.19) I'(2m+1) [2- (2™ —1)¢(2m) — (2™ = 1) C(2m + 1)]
~T(m+1)¢(m+1)>0

holds form =1,2,. ...

Proof. From equation.12 of Theorem6.2, we haveE? > 0. Utilising the
relationship between (-) and( (-) given by @.20 readily gives the inequality
(6.19. O
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Remark 9. In (6.19, if m is odd, then2m andm + 1 are even so that an
expression in the form

(6.20) a(m)¢(2m) = B(m)¢(2m+1) -y (m)¢* (m+1) >0,
results, where

a(m)=22""-1)T(2m+1),

B(m)= (2> —1)T'(2m+1) and

v (m) =T%(m+1).

(6.21)

Thus form oddwe have
a(m)¢(2m) —y(m) ¢ (m+1)
B3 (m)
That is, form = 2k — 1, we have fromg.22
a(2k — 1) ¢ (4k —2) — v (2k — 1) C? (2k)
B2k —1)

(6.22) C2m+1) <

(6.23) ¢4k —1) <

giving fork = 1,2, 3, for example,

2

2
C(3) <™ <1 - W—) = 1.21667148,

7 72
276 w2
7)< 1-— = 1.00887130
¢(7) 1905 ( 2160) ’

62710 ( w2

11) < 1-— = 1.00050356
¢(1) 5803245 492150) ’
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Guo [175] obtained¢ (3) < Z and the above bound faf(3) was obtained

72
previously by the author in/ from (6.10. (See also]d and [19]).

If m is eventhen form = 2k we have from@.22)
o (2K) ¢ (4k) — v (2K) 2 (2k + 1)

(6.24) ((4k+1)< T :

k=1,2,....

We notice that in€.24), or equivalently .20 with m = 2k there are two zeta
functions with odd arguments. There are a number of possibilities for resolving
this, but firstly it should be noticed that(x) is monotonically decreasing for

x> 1sothat( (x1) > ((x2) forl <z < xs.

Firstly, we may use a lower bound obtained in Secti@s given by4.2) or
(4.5). But from Table 1, it seems that () > L (z) for positive integer: and
so we have fromg(24)

(2k) ¢ (2k) — v (2k) L3 (2k)
B (2k) ’
where we have used the fact that(z) < ¢ (z +1).

Secondly, since the even argumé(@k + 2) < ¢ (2k + 1) , then from 6.24)
we have

(6.25) ¢ (4k+1) < &

a (2k) ¢ (4k) — v (2k) ¢ (2k + 2)

3 (2k) '
Finally, we have that (m + 1) > ¢ (2m + 1) so that from ¢.20 we have, with
m = 2k on solving the resulting quadratic equation that

—B3(2k) + /3% (2k) + 4 (2k) a (2k) € (4k)
27 (2k)

(6.26) (g (4k +1) <

(6.27)  (o(dk+1) <
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For £ = 1 we have from&.25 — (6.27) that

4 1 Tt 1\°
) < = — — | — — — | =1.039931461
() <55~ 156 (540 12) ’
7T4 7T4
5) < — (1-— = 1.041111605,
e (5) < g3 ( 16200)

(o (5) < —93 + /8649 + 274 = 1.04157688;

and fork = 2 Bounds for Zeta and Related
Functions

17 1 31 1\?2 P. Cerone
9) < 5 — 6 ——) =1.002082506
)< T60065™ ~ 35770 (283507T 60> :
17 m Title Page
9) < 11— = 1.0020834954
e (9) < 1500657 ( 337650> : P—
1
Co (9) < —17885 + g\/2878859025 + 3478 = 1.00208436. <4 Y3
It should be noted that the above results give tighter upper bounds for the odd ¢ >
zeta function evaluations than were possible using the methodology developed Go Back
earlier in the paper, the numerics of which are presented in Table 1. Close
Numerical experimentation using Maple seems to indicate that the upper :
bounds for Quit
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