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ABSTRACT. In this paper we introduce the-Bessel Fourier transform, the-Bessel transla-

tion operator and the—convolution product. We prove that the-heat semigroup is contractive
and we establish the—analogue of Babenko inequalities associated togthBessel Fourier

transform. With applications and finally we enunciate-aBessel version of the central limit
theorem.
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1. INTRODUCTION AND PRELIMINARIES

In introducingg—Bessel Fourier transforms, the Bessel translation operator and theconvolution
product we shall use the standard conventional notation as describéd in [4]. For further detailed
information ong—derivatives, Jacksog—integrals and basic hypergeometric series we refer
the interested reader to [4], [10], and [8].

The following two propositions will useful for the remainder of the paper.

Proposition 1.1. Consider) < ¢ < 1. The series

(QUSQ)ooldh(O,w;q; Z) = Z(—l) q gz :
n=0 <Q7Q)n

defines an entire analytic function inw, which is also symmetric in, w:
(w; )o0101(0, w3 43 2) = (2 ¢)oc191(0, 25 ¢; w).
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2 LAZHAR DHAOUADI, AHMED FITOUHI, AND J. B KAMEL

Both sides can be majorized by

(w3 @)o101(0, w3 3 2)| < (—|w]; @)oo (—|2]; @)oo
Finally, for all n € N we have

n(n—1)

(@7 9)00101(0,¢" 7" ¢52) = (=2)"¢ = (€7 0)0191(0, 45 5 ¢"2).
Proof. See[10]. O
Now we introduce the following functional spaces:
R,={¥¢", neZ}, R}={¢", neZ}.

Let D,, C,o andC,; denote the spaces of even smooth functions define® ocontinuous

at 0, which are respectively with compact support, vanishing at infinity and bounded. These
spaces are equipped with the topology of uniform convergence, aig hythe space of even
functions f defined ornR, such that

g = | [ 17@Pa# 0] <
We denote byS, the g—analogue of the Schwartz space of even funcfiatefined orR, such
thath;f is continuous ab, and for alln € N there isC), such that
_ G
(1+ 22)7’
Ar the end of this section we introduce thie Bessel operator as follows
1 _ v v
Dgof(2) = —5 [flg7"2) = (14 ™) f(2) + ¢ f(qz)]
Proposition 1.2. Given two functiong andg in £, »,, such that
Aq,vf; Aq,vg € Lq,2,v

1D f(z)| < Vk € N,Vz € R}

then i, N
/ Agof()g(x)z® dyr = / (@) Agug(x)z®  d .
0 0

2. THE NORMALIZED HAHN-EXTON ¢—BESSEL FUNCTION
The normalized Hahn-ExtopBessel function of order is defined as

, (1,9
Il ) = (@, @)oo

whereJég)(-, q) is the Hahn-Extory—bessel function, (see [12]).

eI @, q) =101(0,¢, g, q2?),  R(v) > -1,

Proposition 2.1. The function
z = ju(Az, q),
is a solution of the following—difference equation
Aq,vf(m) - _)‘Zf(x)

Proof. Seel[9]. O

In the following we put

1 (quJrQ7 q2)oo
]' —4q (q27 q2)00
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Proposition 2.2. Letn, m € Z andn # m, then we have

2 > . n 2\ - m 2\ 2v+1 o q—2n(v+1)
Cqw ]v(q z,q )]v(q z,q )ib’ dql' = 1—q(5nm
0 _
Proof. See[[10].
Proposition 2.3.
042, 1 if >
(g )| < S D) ) =0
v ’ — <q2v+2; q2)oo qn2+(2v+l)n If n <0

Proof. Use Propositiof T]1.

3. ¢—BESSEL FOURIER TRANSFORM

The¢—Bessel Fourier transforif, , is defined as follows

Fpu(F)(@) = s / F(t)jo (et )P dt

Proposition 3.1. Theq—Bessel Fourier transform
fq,v : Eq,l,v — Cq,O,
satisfying
[Fgw(Hllego < Booll fllg,

I (=% ) oo ¢%) o

where

Bq,v =

Proof. Use Propositiofi 2]3.
Theorem 3.2.Givenf € L, , then we have
Foo(f)(@) = f(z), VzeR].
If fely1,andF,,(f) € Ly, then
1Fa.0(Pllg.20 = I fllg.20
Proof. Lett,y € R, we put

(17 )t2v+2 )
6q7v(t7 y) = ! )
0 if t#y.

It is not hard to see that

F(£)8q.0(t, )t dgt = f(y)-
0
By Propositiory 2.2, we can write

/ Jo (g, @)t ) dyr = S,(tyy), iy ERY,
0
which leads to the result.
Corollary 3.3. The transformation

Fov:Sq — S,
is an isomorphism, and
-1
fq,v = fi]v’v'
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Proof. The result is deduced from properties of the spfice O

4. g—BESSEL TRANSLATION OPERATOR

We introduce the—Bessel translation operator as follows:
T3 f () = cqo / Foo(F)0)o(@t, a*)ju(yt, ) dyt, Yo,y € RFVF € Lo,
0

Proposition 4.1. For any functionf € £, , we have

15,1 (y) =17, f(x),
and
T3.f(0) = f(x).

Proposition 4.2. For all z,y € R, we have

1. jo (AN, @) = jo(Az, ¢*) o ( Ny, ¢°).
Proof. Use Propositiof 2]2. O
Proposition 4.3. Let f € £, then

17 .1 () :/0 f(2)Dy(z,y, 2)2*"d,z,
where

Dy(z,y,2) =c2, / Jo(@t, ¢*) o (yt, %) ju(zt, ¢ )13 d,t.
0

Proof. Indeed,
T3 16) = oo | Fuol DOt a0yt )t
0
= Cqw /0 {cqw /0 F(2)gu(2t, q%z”’“dqt} Jo(at, q®)ju(yt, @)t dyt

= /0 f(2) lci,v /0 jv(mt,f)jv(yt,q2>jv(zt,q2)t2”“dqt} 22,2,
which leads to the result. O

Proposition 4.4.
lim D,(z,y,z) =0

and
(1 - Q) Z q(2v+2)st($’ Y, qs) =1

SEZL

Proof. To prove the first relation use Proposition|3.1. The second identity is deduced from
Propositioj 4p: iff = 1 thenT, f = 1. O

Proposition 4.5. Givenf € S, then

o0 n(n+1)

g™

15,1 (y) =
0l ¥) — (¢, @*)n(@®2, %)

n

v AL (@).
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Proof. By the use of Propositign 4.1 and the fact that

Ay f@) = (16 [ F (Ot )

]
Proposition 4.6. If v = —1 then
Dy(q™,q",q") = g (@7 @) o011 (0, 2UTEL gy 2B,
Y 7 (1 o q) (q; q)oo ) ) Y )
Proof. Indeed
—n(n+1) _" 2 .
n q n k+n Getn)(btntl)  opp 4 k
A =1 -1 A
v 2 {k + n] (=)™ ’ 7
k=— q
and use Propositidn 4.5. O

5. ¢—CONVOLUTION PRODUCT

In harmonic analysis the positivity of the translation operator is crucial. It plays a central role
in establishing some useful results, such as the property of the convolution product. Thus it is
natural to investigate when this property holdsf¢r.. In the following we put

Q. ={qel0,1], T;, ispositveforall =zeR}}.
Recall that7}), is said to be positive if; . f > 0 for f > 0.

Proposition 5.1. If v = —1 then
Qv = [07 q0]7

whereq, is the first zero of the following function:
q+— 101(0,4,,9).
Proof. The operatof}, is positive if and only if
Dy(z,y,¢°) >0, Vz,y,¢° € R].
We replace? by ¢", and we can choosec N, because
T7.f(y) =17, f(x),

thus we get
(0", Q)o191(0, ¢, ¢,¢" ") = Y " Bu(s,r), Vrs€N,
n=0
where
2n qu—H 0 s Dot q2r+2n+1
— s+1 s+2n+ *
i=1 1=2n+2
and
([0 [ - o - £
By(s,r) = 1—qg=™ - q” ——]7
s =TI o
which leads to the result. O

In the rest of this work we choosgec Q...
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Proposition 5.2. Givenf € L, , then

/ T f (Y™ gy = / FW)y*dyy.
0 0

Theg—convolution product of both function§ g € £, , is defined by

frq9(@) = ¢ /0 TowfW)g(y)y™dgy
Proposition 5.3. Given two functiong, g € £, 1, then

f*q9 € Ly,
and
"Tq,v(f *q g9) = fq,v<f>~7:q,v(g>~
Proof. We have

If *q g”q&w < Hqu,LngHq,l,v'
On the other hand

Faw(f %4 9)( / U F@)Ty 30N, ) x| g(y)y™dgy
—]:qv qv(g)()‘)~

6. ¢—HEAT SEMIGROUP

The g—heat semigroup is defined by:
qu,tf(x) = Gv('? t q2> *q f(CL’)
= Cqu / Ty, Gy t, ) f(9)y* dgy, V€ Lo
0

G°(-,t,q*) is theq—Gauss kernel oP),
(_q2v+2t’ _q—ZU/t; q2)oo ( q—2v ) 2)
GY(z,t,¢%) = el — x5, q° ).
ande(+, ¢) theg-exponential function defined by

o0

z" 1
e(ZaQ):Z( = R |Z| < 1.

—~ (¢.0)n (%0

Proposition 6.1. Theq—Gauss kernez* (-, t, ¢*) satisfying

Foo{G (1,4} (2) = e(—ta®, ¢°),
and

Fow {e(—ty2, q2)} (r) = G°(x,t,q%).
Proof. In [5], the Ramanujan identity was proved

2s 42 o ’
qu 7Q)oo (bszq)

2
I G L
(
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which implies
OO 2 2\ 2n 2041 (q2n+2u+2)8
e(—ty", ¢ )y"y"dyy = (1 —¢ E reryesrTa
/o ( ) w=0-9 — (4%, %)
2n+2v+2 T 5 9
(_tq * +7_q t 7q’q)oo

=(1-q) ;
(_t, q2n+2v+2, _qT’ q2)

The following identity leads to the result

(aa q2)oo = (CL, q2)n(q2na7 q2)oo>

and

O

Proposition 6.2. For any functionsf € S,, we have

P;,tf(x) = 6(tAq,v> qz).f@j)
Proof. Indeed, if
Cq,v/ G”(y, t, q2)y2ny2v+1dqy — (q2v+2’ (]2)nq_n(n+n)tn,
0
then
P f(z) = i G [C / ) G (y, t, )"y gy | Ay, f(x)
ot (%, )@ 2,020 [ Jo ' I

O

Theorem 6.3.For f € £, and1 < p < oo, we have

1Pgef lapw < 1 fllgp.-
Proof. If p = 1 then
1Py ef lore S NG Gt @) g | fllgaw = 1 Fllg10-
Now letp > 1 and we consider the following function
gy T,,G(y,t:¢%).

In addition

o0 e} p
12, < [ | s )
0 0

¢p — Y

By the use of the Holder inequality and the fact that' (-, ¢, ¢*)||,.1., = —, the result follows

)
Cq,v

immediately. O
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7. (—WIENER ALGEBRA

Foru € L1, andX € R}, we introduce the following function

. 1 x
Uy : T — —)\2v+2u (X) .
Proposition 7.1. Givenu € L, , such that

/ u(z)r*da = 1,

0

then we have .

lim/ f(@)un(z)z®de = f(0), Vf € Cyyp
0

A—0
Corollary 7.2. The following function
Yz e GU(T, N2 4P,
checks the conditions of the preceding proposition.
Proof. Use Propositiof 6]1. O
Theorem 7.3.Givenf € L,1,N Ly, 1 < p < oo and fy defined by

hz) = ¢ /0 N Fau(HW)e(=Ny*, ¢*)jo(zy, ¢*)y* ' dyy.

then we have
}\ii% ”f - fAHqJJﬂJ =0.

Proof. We have
[ Gi(z) = Cq,v/o fq7v(f)(t)€(—A2t2’ q2)jv(tl’> q2>t2v+1dqt'

In addition, for alle > 0, there exists a functioh € £, , with compact support ifig*, ¢=*]
such that

If - th,p,v <ég,
however

|G #q f = fllapw S NG xq (f = D)llgpw + [|GX % h = Bllgpw + |f = Pllgpo-

By Theorenj 6.B we get
1G5 #q (f = P)llgp < I1f = Pllgp0-

Now, we will prove that
}\ir% |G *q h = hllgp0 = 0.

Indeed, by the use of Corollary 7.2 we get

A—0

1
lim/ |G %, h(z) — h(2)|Px* T d,z = 0.
0

On the other hand the following function is decreasing on the intétyab:
u = u* TG (u).

If A < 1, then we deduce that
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We can use the dominated convergence theorem to prove that

lim 100 |GY x4 h(x) — h(x)|P2*" T d,2 = 0.
0J
Corollary 7.4. Givenf € L, , then
fﬁﬂZC@(AMJ%AnyMAxMQ5f“”¢w, vz e RY
Proof. The result is deduced by Theorém|7.3 and the following relation
(1= q)z®*?|f(z) — K@) <IIf = fallgre Vo € RY.
0

Now we attempt to study the—Wiener algebra denoted by
Aq,v = {f € £q,1,va Fq,v(f) € Eq,l,v} .

Proposition 7.5. For 1 < p < oo, we have

(1) Ajo € Lypo and Ay, =Ly,
(2 Aq,v - Cq,O and Aq,v = quo'

Proof. 1. Givenh € L, ,, with compact support, and we plt, = h x, G¢.. The function
h. € A, and by Theorerp 7|3 we get

m [|h — hullgpe = 0.
2. If f € C,, then there exist € C,, with compact support ofy*, ¢*], such that

”f - hHCq,o <§g,

and by Corollary 7}4 we prove that

lim [sup |h(z) — hn(x)]] = 0.

n—oo
mGRZ}'

Theorem 7.6.For f € L2, N Ly 1., We have

1 Faw(Hllg2o = [1fllg.20-
Proof. We put
fn = f *q Gzna
which implies
‘/T%U(fn)(t) = 6(_q2nt27 qz)fq,v(f)(t)7
by Corollary[7.4 we get
fa@) =y [ Fuul £ O, At
0
On the other hand

/0 T F@) fula)a g = / T Fon(F) @) Fanlfu) (@) .
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Theoren 7.8 implies

lim [ Fou(f)(2)%e(=¢"2% )™ dgr = || f]135,0-

n—o0 0

The sequence(—q¢*"x?, ¢*) is increasing. By the use of the Fatou-Beppo-Levi theorem we
deduce the result. 0J

Theorem 7.7.

(1) Theg—cosine Fourier transfornf, , possesses an extension

U: Lq’gﬂ, — 'Cq,Q,v'
(2) For f € L4, we have
1U(NMa2w = fllg2.0
(3) The application is bijective and
U'l=U.
Proof. Let the maps
u: Ay — Ao, [ Faulf).

Theorenj 3.2 implies
luC) a2 = 11Fllg20-

The mapu is uniformly continuous, with values in complete spate . It has a prolongation
UonAg, =Ly, O

Proposition 7.8. Givenl < p < 2and + .; = 1,if f € Ly, thenF, . (f) € L0,
||~7:q7v(f)||q7p’,v < Bp,qw”f“q,pmv

where
(2-1)
Bp’qﬂ) = Bq’v .
Proof. The result is a consequence of Proposifion 3.1, Theprem 7.7 and the Riesz-Thorin theo-
rem, see [13]. O

As an immediate consequence of Proposition 7.8, we have the following theorem:

Theorem 7.9.Givenl < p,p/,r < 2and

1 1 1
-+ ——1==,
p v r
if felyp,andg € L, ., then
f *q g 6 £q,r,v7
and
I f *q g”q,m < Bq,p,qu,p’,qu,r’,v||f‘|q,p,v||9||q,p’,va
where
1 1
4= =1
roor!

Proof. We can write

f *q¢ g = fq,v {fq,v(f>fq,v(g>}a
the use of Propositidn 7.8 and the Holder inequality leads to the result. O

Now we are in a position to establish the hypercontractivity of¢h&eat semigroug’,.
For more information about this notion, the reader can consulti([1, 2, 3]).
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Proposition 7.10.For f € £, , andt € R}, we have

) _ v+l
||Pq,tf||q7p,v < By wBgpr (1, ¢, 0)E 7 || fllg w0
where
1 1 1 1 1
1<p/<p§27 _+_:17 _:_/——7
b bn r b b
and
C(’l“, q, U) = ||€(—ZE2, q2)||q,7’,v'

Proof. The result is deduced by the following relations

Fow {G (10"} (z) = e(—ta”, ¢*),

and
v4+1

1Fa0 {G" (.t 0") } g = clr, g )t

8. ¢—CENTRAL LIMIT THEOREM

In this section we study the analogoue of the well known central limit theorem with the aid
of theg—Bessel Fourier transform.

For this, we consider the sgit(;” of positive and bounded measures®. The g-cosine
Fourier transform of € M is defined by

Fpol€)() = / Tt )P,

The g—convolution product of two measur€sp € M is given by

€%, plf) = / T? F(1 ot (2 dop(1),

and we have

Faw(& %q p) = Fo(§)Fgu(p)-
We begin by showing the following result

Proposition 8.1. For f € A, , and{ € M, we have

/ fx)a* 1 d g (x) = cqp / Foo(N) (@) Fo(€) (2)a™dya.
0 0
As a direct consequence we may state

Corollary 8.2. Given¢, &' € M such that
Faw(§) = fq,v(gl)a
thené = ¢'.
Proof. By Propositiorj 8.]1, we have
| @) = [ g @, v e Ay,
0 0

from the assertion (2) of Propositipn 7.5, we conclude ghat¢’. O
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Theorem 8.3. Let ({,,).>0 be a sequence of probability measures\df such that
Tim . (6) (1) = (1),
then there exist§ € M such that the sequenég converges strongly towarg and

Fow(§) = 1.
Proof. We consider the map, defined by

I,(u) = /000 u(z)r*d & (), V€ Cho

By the following inequality
[ ()| < [lullc

q,0?

and by Proposition 81, we get

1.(f) = o /0 Fou ) (@) Fan(€)(@)a dyr,  Vf € Ay,

which implies

lim I,(f) = /000 Foo(H)(@)(x)x* T dyz, Vf e Ao

On the other hand, by assertion (2) of Proposition 7.5, and by the use of the Ascoli theorem (see
[11]):

Consider a sequence of equicontinuous linear form§,@nwhich converge on a dense part
A, then converge on the entifg ,. We get

lim 7, (u) = / Foo(w)(z)(x)a* dyz, Vu € Cyp.
0

n—oo

Finally there exist € M such that

lim u(z)r* 1 d & (7) :/ u(z)r® T dE(x), Yu € Cypo.
0

n—oo 0
On the other hand
fq,v(Aq,v) = Aq,vv
an

d
/O Fyo ) (@) Fp6) (@) dyz = / Foul D)@)b()a? dgz, Y € Ay

which implies

Feul) = 9.

Proposition 8.4. Given¢ € M, and supposing that

o= / 2T, E(t) < oo,
0

then
2

q o

2 2
x° +o(x”).
(q27q2)1(q2v+27q2)1 ( )

Foo(@)(x) =1 -
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Proof. We write

242
. q°t 2 2 2
L(tr,¢?) =1 — ? + 220(tx)t,
Ju(te,q7) & O, (tx)
where
hH(l) 6(z) =0,
then
C]ZU 2 > 2 2041 2
Fou(&)(z) =1— (qz,q2)1(q2“+2,q2)1x + {/0 20(tx)t? T d (L) | 22

Now we are in a position to present the central limit theorem.

Theorem 8.5. Let ({,,).>0 be a sequence of probability measures\df of total massl, satis-

fying

lim no, =0, where o, = / 22 d & (1),

n—oo 0

and

lim ng, =0, where &, = — g g (t
nl—{gono- ) g /0 1 —|—t2 (16 ( )7

theng*™ converge strongly toward a measueefined by

_‘72—0 2
deé(z) = cquFyw (e @@ D1 (T ) (x)d,.

Proof. We have
Fo(&3") = (Fou(&n))"™,

and

2

q 0On 2 2

fvnle_ 1’+9nl'$7
q, (5 )( ) (q27q2>1(q2v+2’q2)1 ( )
where
O, () = / 20(tx) T d & ().
0

Consequently

2

Fralea) ) = exp o [1 = oo, 0127 .

By the following inequality

t4
t20(tz)| < C,b——, Vte R,
£6(t)] < Cogy ;
where(C, is some constant, the result follows immediately. O
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