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ABSTRACT. In this paper, we define two mappings associated with the Hadamard inequality,
investigate their main properties and give some refinements.
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1. INTRODUCTION

Let f, —g : [a,b] — R both be continuous functions. jfis a convex function, then we have

a b
1) 1(“57) <555 [ st

The inequality[(T.]t) is well known as the Hadamard inequality (See [1] — [6]). For some recent
results which generalize, improve, and extend this classical inequality, see the references of [3].

When f, —¢g both are convex functions satisfyirfég(x)dx >0 andf(“T*”) >0, S.-J. Yang
in [7] generalized[(1]1) as

w2 F) LS
s () = S att >dt
To go further in exploring (1]2), we define two mappingandF by L : [a,b] X [a,b] — R,

sonso=[[ 50a-0-or (7)) o-on(-52) [0

andF : [a,b] X [a,b] — R,

F(x,y;f,g)Zg(x;y)/x f(t)dt—f(x;ry) /:g(t)dt.
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The aim of this paper is to study the propertied.adnd /' and obtain some new refinements

of (1.2).

To prove the theorems of this paper we need the following lemma.

Lemma 1.1. Let f be a convex function dia, b]. The mappind is defined as

G ) = [ - - of (S5

ThenH (a, y; f) is nonnegative and monotonically increasing wijtbn [«, b] (se€f8]), H (x, b; f)
is nonnegative and monotonically decreasing withn [a, b] (se€[9]).

2. MAIN RESULTS

The properties of. are embodied in the following theorem.

Theorem 2.1.Let f and —g both be convex functions i b]. Then we have:
(1) L(a,y; f,g) is nonnegative increasing withon [a, b], L(z,b; f, g) is nonnegative de-
creasing withe on [a, b].

(2) Whenf g(z)dr > 0and f (44 ) > 0, for anyz,y € (a,b) anda > 0 and > 0 such
thata + 5 = 1, we have the following refinement pf (1.2)

() b0 )L

D E S e 20— ()
(b—a) (a;) Jfdt aL(ay; f.g) + AL <xbf, 9)
< Pewdr PG R T (432) [T a(t)d

o o fd 2f(52) _ [ f(t)dt
Sa g 20 (%) T [yt

The main properties af" are given in the following theorem.

Theorem 2.2.Let f and—g both be nonnegative convex functiongarb| satisfyingfab g(x)dx >
0. Then we have the following two results:

(1) If f and—g both are increasing, thef'(a, y; f, g) is nonnegative increasing withon
la, b], and we have the following refinement[of {1.2)

F2) (%Y F(a,y; f,9) 12 Ftyat
2.2 < < ,
22) (50 S g (=) T (@) Poma S o

wherey € (a,b).
(2) If f and—g both are decreasing, theR(x, b; f, g) is nonnegative decreasing withon
la, b], and we have the following refinement|of {1.2)

f57) 1) | F(sc,b;f,g> o fC)dt
g(%5") ~ 9(30) () [y g(t)d fgt

wherez € (a,b).

S

(2.3)
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3. PROOF OF THEOREMS

Proof of Theorem 2]1.

(1) By Lemmd 1.]1 and the convexity ¢fand—g, it is obvious thatf (a, y; f) andH (a, y; —g)
both are nonnegative increasing witton [a, b]. ThenL(a,y; f,9) = H(a,y; f)H(a,y; —g) iS
nonnegative increasing withon [a, b]. By the same arguments of proof féfa, y; f, g), we
can also prove that(z, b; f, g) is nonnegative decreasing withon [a, b].

(2) SinceH (a,y; f) is monotonically increasing with on [a, b], for anyy € (a,b) anda > 0,
we have

(3.1) 0=alL(a,a; f,g) < al(a,y; f,g9) < al(a,b; f,g).

As H(x,b; f) is monotonically decreasing with on [a, b], for anyz € (a,b) andg > 0, we
have

(3.2) 0= pL(a,a; f,g9) < BL(x,b; f,9) < BL(a,b; f,g).
Whena + § = 1, expression| (3]1) plu§ (3.2) yields
(3.3) 0= L(a,a; f,9) < aL(a,y; f,9) + BL(x,b; f,9) < L(a,b; f, ).

Expression[(313) plus

-t (0) o (50) + [ s [
yields

(3.4) (b— )f(“b) (“;b) /f dt
< (b—a) (a+b)g<a+b /f dt/
)

2
+ aL(a,y; f,g) + BL(z,b; £, g)

< (b—a)g (a—gb)/ fO)dt+ (b—a)f (a;b) /abg(t)dt.

By the convexity off andg, f g(x)dz >0, f ( ) > 0and(1 l) we get

(35) (b—a)g(a;b)z/abg<t>dt>o, /af@)dtz(b—a)f(“;b)zo.

Using [33), we obtain

36) o-ar () o (“0) + [ e [ atoa
z(z)—a)f(“;b)/a g()dt + ( b—af(a+b) dt
—20-a7 (“3") | gty
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and

(3.7) <b—a>g(“j”) / bf(t)dtﬂb—a)f(a;b) / g0y
s2<b—a>g(“§”) / oyt

Combining [3.4),[(3)6) andl (3.7), and dividing the combined formula by

2b— a)g (“ ; b) /abg(t)dt
yields [2.1).

This completes the proof of Theorgm|2.1. O

Proof of Theorem 2]2.

(1) By Lemmg 1.1l and the convexity ¢gfand—g, we can see thatf (a, y; f) andH (a, y; —g)
both are nonnegative increasing witlon [a, b]. From the nonnegative increasing properties of
f andg, we get that

(ayfg)—g(a+y)/ f(t dt—f(a+y)/ g(t)dt
o3 ([ re--or(552)
) ([ (:52)

Zg(a;y) -H(ajy;f)+f(a+y> - H(a,y; —9)

iS nonnegative increasing withon [a, b].
SinceF(a,y; f, g) is monotonically increasing with on [a, b], for anyy € (a, b), we have

(3.8) 0= F(a,a; f,9) < Fla,y; f,9) < Fla,b; f, 9).

Expression[(318) plus
a+b b
f( 5 ) / g(t)dt
yields

b b
39) (“50) [atoa=s (U5 [atars o

2
<f (a+b)/bg (t)dt + F(a,b; f,g)

o

f
Expression[(3]9) divided by

yields [2.2).
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(2) By Lemmd 1.1l and the convexity ¢fand—g, we can see thatf (z, b; f) and H (x, b; —g)
are both nonnegative decreasing withon [a, b]. Further, from the nonnegative decreasing
properties off andg, we obtain that

F(x,b;f7g>=g(x‘;b) -H(sc,b;f>+f(

is nonnegative decreasing withon [a, b].
For anyz € (a,b), then
(3.10) 0=Fa,a;f,9) < F(z,b; f,9) < Fla,b; f,g).

Using (3.10), by the same arguments of proof for (1) of Thedrefn 2.2, we can also prove that

(2.3) is true.
This completes the proof of Theorgm|2.2. O

Tz +b
2

) - H(x,b;—g)
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