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ABSTRACT. In this paper, we define two mappings associated with the Hadamard inequality,
investigate their main properties and give some refinements.
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1. I NTRODUCTION

Let f,−g : [a, b] → R both be continuous functions. Iff is a convex function, then we have

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(t)dt.

The inequality (1.1) is well known as the Hadamard inequality (see [1] – [6]). For some recent
results which generalize, improve, and extend this classical inequality, see the references of [3].

Whenf,−g both are convex functions satisfying
∫ b

a
g(x)dx > 0 andf(a+b

2
) ≥ 0, S.-J. Yang

in [7] generalized (1.1) as

(1.2)
f

(
a+b
2

)
g

(
a+b
2

) ≤ ∫ b

a
f(t)dt∫ b

a
g(t)dt

.

To go further in exploring (1.2), we define two mappingsL andF by L : [a, b]× [a, b] 7→ R,

L(x, y; f, g) =

[∫ y

x

f(t)dt− (y − x)f

(
x + y

2

)] [
(y − x)g

(
x + y

2

)
−

∫ y

x

g(t)dt

]
andF : [a, b]× [a, b] 7→ R,

F (x, y; f, g) = g

(
x + y

2

) ∫ y

x

f(t)dt− f

(
x + y

2

) ∫ y

x

g(t)dt.

119-08

mailto:helan0505@163.com
http://www.ams.org/msc/


2 LAN HE

The aim of this paper is to study the properties ofL andF and obtain some new refinements
of (1.2).

To prove the theorems of this paper we need the following lemma.

Lemma 1.1. Letf be a convex function on[a, b]. The mappingH is defined as

H(x, y; f) =

∫ y

x

f(t)dt− (y − x)f

(
x + y

2

)
.

ThenH(a, y; f) is nonnegative and monotonically increasing withy on[a, b] (see[8]), H(x, b; f)
is nonnegative and monotonically decreasing withx on [a, b] (see[9]).

2. M AIN RESULTS

The properties ofL are embodied in the following theorem.

Theorem 2.1.Letf and−g both be convex functions on[a, b]. Then we have:

(1) L(a, y; f, g) is nonnegative increasing withy on [a, b], L(x, b; f, g) is nonnegative de-
creasing withx on [a, b].

(2) When
∫ b

a
g(x)dx > 0 andf

(
a+b
2

)
≥ 0, for anyx, y ∈ (a, b) andα ≥ 0 andβ ≥ 0 such

thatα + β = 1, we have the following refinement of (1.2)

f
(

a+b
2

)
g

(
a+b
2

) ≤ (b− a)f
(

a+b
2

)
2
∫ b

a
g(t)dt

+

∫ b

a
f(t)dt

2(b− a)g
(

a+b
2

)(2.1)

≤
(b− a)f

(
a+b
2

)
2
∫ b

a
g(t)dt

+

∫ b

a
f(t)dt

2(b− a)g
(

a+b
2

) +
αL(a, y; f, g) + βL(x, b; f, g)

2(b− a)g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt

2
∫ b

a
g(t)dt

+
2f

(
a+b
2

)
2g

(
a+b
2

) ≤ ∫ b

a
f(t)dt∫ b

a
g(t)dt

.

The main properties ofF are given in the following theorem.

Theorem 2.2.Letf and−g both be nonnegative convex functions on[a, b] satisfying
∫ b

a
g(x)dx >

0. Then we have the following two results:

(1) If f and−g both are increasing, thenF (a, y; f, g) is nonnegative increasing withy on
[a, b], and we have the following refinement of (1.2)

(2.2)
f

(
a+b
2

)
g

(
a+b
2

) ≤ f
(

a+b
2

)
g

(
a+b
2

) +
F (a, y; f, g)

g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt∫ b

a
g(t)dt

,

wherey ∈ (a, b).
(2) If f and−g both are decreasing, thenF (x, b; f, g) is nonnegative decreasing withx on

[a, b], and we have the following refinement of (1.2)

(2.3)
f

(
a+b
2

)
g

(
a+b
2

) ≤ f
(

a+b
2

)
g

(
a+b
2

) +
F (x, b; f, g)

g
(

a+b
2

) ∫ b

a
g(t)dt

≤
∫ b

a
f(t)dt∫ b

a
g(t)dt

,

wherex ∈ (a, b).
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3. PROOF OF THEOREMS

Proof of Theorem 2.1.
(1) By Lemma 1.1 and the convexity off and−g, it is obvious thatH(a, y; f) andH(a, y;−g)
both are nonnegative increasing withy on [a, b]. ThenL(a, y; f, g) = H(a, y; f)H(a, y;−g) is
nonnegative increasing withy on [a, b]. By the same arguments of proof forL(a, y; f, g), we
can also prove thatL(x, b; f, g) is nonnegative decreasing withx on [a, b].

(2) SinceH(a, y; f) is monotonically increasing withy on [a, b], for anyy ∈ (a, b) andα ≥ 0,
we have

(3.1) 0 = αL(a, a; f, g) ≤ αL(a, y; f, g) ≤ αL(a, b; f, g).

As H(x, b; f) is monotonically decreasing withx on [a, b], for anyx ∈ (a, b) andβ ≥ 0, we
have

(3.2) 0 = βL(a, a; f, g) ≤ βL(x, b; f, g) ≤ βL(a, b; f, g).

Whenα + β = 1, expression (3.1) plus (3.2) yields

(3.3) 0 = L(a, a; f, g) ≤ αL(a, y; f, g) + βL(x, b; f, g) ≤ L(a, b; f, g).

Expression (3.3) plus

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt

yields

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt(3.4)

≤ (b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt

+ αL(a, y; f, g) + βL(x, b; f, g)

≤ (b− a)g

(
a + b

2

) ∫ b

a

f(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt.

By the convexity off andg,
∫ b

a
g(x)dx > 0, f

(
a+b
2

)
≥ 0 and (1.1), we get

(3.5) (b− a)g

(
a + b

2

)
≥

∫ b

a

g(t)dt > 0,

∫ b

a

f(t)dt ≥ (b− a)f

(
a + b

2

)
≥ 0.

Using (3.5), we obtain

(b− a)2f

(
a + b

2

)
g

(
a + b

2

)
+

∫ b

a

f(t)dt

∫ b

a

g(t)dt(3.6)

≥ (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt

= 2(b− a)f

(
a + b

2

) ∫ b

a

g(t)dt
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and

(3.7) (b− a)g

(
a + b

2

) ∫ b

a

f(t)dt + (b− a)f

(
a + b

2

) ∫ b

a

g(t)dt

≤ 2(b− a)g

(
a + b

2

) ∫ b

a

f(t)dt.

Combining (3.4), (3.6) and (3.7), and dividing the combined formula by

2(b− a)g

(
a + b

2

) ∫ b

a

g(t)dt

yields (2.1).
This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2.
(1) By Lemma 1.1 and the convexity off and−g, we can see thatH(a, y; f) andH(a, y;−g)
both are nonnegative increasing withy on [a, b]. From the nonnegative increasing properties of
f andg, we get that

F (a, y; f, g) = g

(
a + y

2

) ∫ y

a

f(t)dt− f

(
a + y

2

) ∫ y

a

g(t)dt

= g

(
a + y

2

) (∫ y

a

f(t)dt− (y − a)f

(
a + y

2

))
+ f

(
a + y

2

) (∫ y

a

g(t)dt− (y − a)g

(
a + y

2

))
= g

(
a + y

2

)
·H(a, y; f) + f

(
a + y

2

)
·H(a, y;−g)

is nonnegative increasing withy on [a, b].
SinceF (a, y; f, g) is monotonically increasing withy on [a, b], for anyy ∈ (a, b), we have

(3.8) 0 = F (a, a; f, g) ≤ F (a, y; f, g) ≤ F (a, b; f, g).

Expression (3.8) plus

f

(
a + b

2

) ∫ b

a

g(t)dt

yields

f

(
a + b

2

) ∫ b

a

g(t)dt ≤ f

(
a + b

2

) ∫ b

a

g(t)dt + F (a, y; f, g)(3.9)

≤ f

(
a + b

2

) ∫ b

a

g(t)dt + F (a, b; f, g)

= g

(
a + b

2

) ∫ b

a

f(t)dt.

Expression (3.9) divided by

g

(
a + b

2

) ∫ b

a

g(t)dt

yields (2.2).
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(2) By Lemma 1.1 and the convexity off and−g, we can see thatH(x, b; f) andH(x, b;−g)
are both nonnegative decreasing withx on [a, b]. Further, from the nonnegative decreasing
properties off andg, we obtain that

F (x, b; f, g) = g

(
x + b

2

)
·H(x, b; f) + f

(
x + b

2

)
·H(x, b;−g)

is nonnegative decreasing withx on [a, b].
For anyx ∈ (a, b), then

(3.10) 0 = F (a, a; f, g) ≤ F (x, b; f, g) ≤ F (a, b; f, g).

Using (3.10), by the same arguments of proof for (1) of Theorem 2.2, we can also prove that
(2.3) is true.

This completes the proof of Theorem 2.2. �
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