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In this paper, we define two mappings associated with the Hadamard inequality,

investigate their main properties and give some refinements.
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1. Introduction

Let f, —g : [a,b] — R both be continuous functions. ffis a convex function, then
we have

a b
(L.1) f( ;b) < [ s

The inequality {.1) is well known as the Hadamard inequality (ség-f [6]). For
some recent results which generalize, improve, and extend this classical inequality,
see the references d][
When f, —g both are convex functions satlsfyl[f§ g(z)dz > 0andf (%) > 0,
S.-J. Yang inT] generalized1.1) as

(a—i—b) f f
(1.2) g(a+b) < f ()dt

To go further in exploringX(.2), we define two mappings andF by L : [a, b] x
la,b] — R,

s [10n-t-o1 (359 [o-ow (25 [0

andF : [a,b] X [a,b] — R,

F(:c,y;f,g)zg(x;ry> /:f(t)dt—f(x;y) /xyg(t)dt.

The aim of this paper is to study the propertied.aind ' and obtain some new
refinements of(.2).
To prove the theorems of this paper we need the following lemma.
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Lemma 1.1. Let f be a convex function dia, b]. The mappind is defined as

Hai§) = [ 10 - =07 (75,

ThenH (a,y; f) is nonnegative and monotonically increasing witton [a, b] (see
b

[8]), H(z,b; f) is nonnegative and monotonically decreasing witbn [a, b] (see

[9]).
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2. Main Results

The properties of. are embodied in the following theorem.

Theorem 2.1.Let f and —g both be convex functions ¢ b]. Then we have:

1. L(a,y; f, g) is nonnegative increasing withon [a, b], L(x, b; f, g) iS nonnega-
tive decreasing witlr on [a, b].

2. When[” g(z)dz > 0 and f (%) > 0, for anyz,y € (a,b) anda > 0 and
(£ > 0 such thate + 5 = 1, we have the following refinement Gf %)

F(152) _b—a)f (452)  Jy I
TG Y PO AN I Y
(b—a)f (<2 Jo 1(t)dt
S 2 lgmd 20 ()
(a y‘f g) + BL(x, b'f 9)
)g (52) Jy 9t
at b
IO 43 f(T) < “b (t
2f ot 29 (4£2) [ g(t) )dt

The main properties af' are given in the following theorem.

Theorem 2.2.Let f and—g both be nonnegative convex functiongarb] satisfying
f;g(x)da: > 0. Then we have the following two results:
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1. If f and —g both are increasing, thef'(a, y; f, g) iS nonnegative increasing

with y on [a, b], and we have the following refinement of3)

F) F0) F(a,y;f,g) _ Jutd
g (5%~ g(F) g (e) [Pg(t)d fgt

wherey € (a,b).

(2.2)

. If f and —g both are decreasing, thef(z, b; f, g) is nonnegative decreasing
with = on[a, b], and we have the following refinement of4)

£ f() (xb'f,) fft
(5 = g (50 g (=) et~ [Telnar

wherex € (a,b).

(2.3)
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3. Proof of Theorems

Proof of Theoren2. ..

(1) By Lemmal.1 and the convexity of and—g, it is obvious thatt (a, y; f) and
H(a,y; —g) both are nonnegative increasing witon [a,b]. ThenL(a,y; f,g9) =
H(a,y; f)H (a,y; —g) is nonnegative increasing withon [a, b]. By the same argu-
ments of proof forL(a, y; f, g), we can also prove thdi(zx, b; f, g) is nonnegative
decreasing with: on [a, b].

(2) SinceH (a,y; f) is monotonically increasing with on [a, b], for anyy € (a,b)
anda > 0, we have

(3.1) 0=al(a,a; f,g9) < al(a,y; f,g9) < al(a,b; f,g)

As H(z,b; f) is monotonically decreasing with on [a, b], for anyz € (a,b) and
£ >0, we have

(3.2) 0=pBL(a,a; f,g9) < BL(x,b; f,9) < BL(a,b; [, g)
Whena + g = 1, expressiond.1) plus (3.2) yields

(3.3) 0= L(a,a; f,g9) < al(a,y; f,9) + BL(x,b; f,g) < L(a,b; f,g).

Expression§.3) plus

o-arr (“50) o (“50) + [ s [ ot
yields

34  (b—a)f (“2”’) g (“;b> +/abf(t)dt/abg(t)dt
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g(b—a)"’f(“;b) (“b) /f dt/

+al(a,y; f,9) + BL(z,b; f,g)

g(b—@g(a;b)/a f(t)dt+(b—a)f<a;b)/a g(t)d.

By the convexity off andg, f; g(z)dz >0, f (42) > 0and (..1), we get

(3.5) <b—a>g(“;b) z/abg<t>dt>o, /Gf(t)dtzw—a)f (‘2”)) > 0.

Using (3.5), we obtain

(3.6)

b (£395(239) -0 a0
2(b—a)f<a_2'_b>/a g(t)dt + ( b—af<a+b> £)dt

—20-ar (“52) [ s

[\]
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Combining @.4), (3.6) and 3.7), and dividing the combined formula by

2(b—a)g (a ; b) /bg(t)dt
yields (2.1). '

This completes the proof of Theoreml. ]

Proof of Theoren?.2.

(1) By Lemmal.1and the convexity off and—g, we can see thall (a,y; f) and
H(a,y; —g) both are nonnegative increasing witlon [a, b]. From the nonnegative
increasing properties gf andg, we get that

Fla,y; f, )—g(a+y)/ £t dt—f(a+y>/ g(b)dt
~o(%50) ([ - -ar (57))
*f(w)(/a ==y (7))

—g<a;y> H(a,y; f)+f<a+y) H(a,y;—9)

iS nonnegative increasing withon [a, b].
SinceF'(a, y; f, g) is monotonically increasing withon[a, b], for anyy € (a,b),
we have

(3.8) 0= F(a,a; f,9) < Fla,y; f,9) < F(a,b; f,9).

Expression §.9) plus
b b
f(a; )/ g(t)dt
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yields

b b
co)  £(57) [atnar<s () [[atars oo

b
gf(QQb)/g )t + F(a,b; [, g)

o(5) e

a b
9( —2H)>/a g(t)dt
yields (2.2).

(2) By Lemmal.1 and the convexity off and—g, we can see thal/(z, b; f) and
H(z,b; —g) are both nonnegative decreasing witbn [a, b]. Further, from the non-
negative decreasing propertiesfoindg, we obtain that

Floti f) =g (T30 ) - Hi )+ (550 Heabi-g)

is nonnegative decreasing withon [a, b].
For anyz € (a,b), then

(3.10) 0= F(a,a; f,g) < F(x,b; f,g) < F(a,b; f,9).

Using (3.10), by the same arguments of proof for (1) of Theorgry we can also
prove that £.3) is true.
This completes the proof of Theoremn. O

Expression §.9) divided by
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