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ABSTRACT. A L1-estimate will be established for cosine series, considering the generalized
Fomin-classFϕ, whereϕ is a function more general than the power function
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1. I NTRODUCTION

Let

(1.1) f(x) =
a0

2
+

∞∑
n=1

an cosnx.

Many authors ([1], [2], [9] – [15]) have investigated coefficient conditions guaranteeing that
(1.1) is a Fourier series of some functionf ∈ L1 and they have given estimates for

∫ π
0
|f(x)|dx

via the sequence{an}.
Recently Z. Tomovski [15] proved a theorem of this type by using the class of coefficients

defined by Fomin [1] as follows: a sequence{an} belongs toFp (p > 1) if ak → 0 and

(1.2)
∞∑
k=1

{
1

k

∞∑
i=k

|∆ai|p
} 1

p

<∞.

Now we can formulate Z. Tomovski’s result [15]:
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2 JÓZSEFNÉMETH

Theorem 1.1. Let {an} ∈ Fp, 1 < p ≤ 2, then the series (1.1) is a Fourier series and the
following inequality holds:

(1.3)
∫ π

0

|f(x)|dx ≤ Cp

∞∑
n=1

{
1

n

∞∑
k=n

|∆ak|p
} 1

p

,

whereCp depends only onp.

Recently we ([7]) investigated the properties of classes of numerical sequences obtained by
using functions more general than the power functions. Such functions were used first of all
in the works of H.P. Mulholland [5] and M. Mateljevič and M. Pavlovǐc [8]. The following
definition is due to Mateljevič and Pavlovǐc.

∆(q, p) (q ≥ p > 0) denotes the family of the nonnegative real functionsϕ(x) defined on
[0;∞) with the following properties:ϕ(0) = 0, ϕ(t)

tq
is nonincreasing andϕ(t)

tp
is nondecreasing

on (0;∞). ∆ will denote the set of the functionsϕ(x) ∈ ∆(q, p) for someq ≥ p > 0.
Using this notion in [7] we defined the following class: a nullsequence{an} belongs to the

classFϕ for someϕ ∈ ∆ if

(1.4)
∞∑
n=1

ϕ

(
1

n

∞∑
k=n

ϕ(|∆ak|)

)
<∞,

whereϕ is the inverse of the functionϕ.
The aim of the present paper is to generalize Theorem 1.1 usingFϕ instead ofFp, where

ϕ ∈ ∆. Since our goal is to get a result concerning such functions asϕ(x) = x logα(1+x) and
not only for functions which are generalizations ofxp (p > 1), we therefore need to define two
subclasses of∆. Namely we use the following definitions:∆(1) denotes the family of functions
ϕ(x) belonging to∆(q, p) for someq ≥ p > 1 and∆(2) is the collection of functionsϕ(x)
from ∆(q, 1) for someq > 1 such that for allA > 0 there existsp := p(A) > 1 satisfying the
condition thatϕ(x)

xp is nondecreasing on(0;A). It is obvious that∆(1) ⊂ ∆(2).
After giving these definitions we can formulate our result which generalizes Theorem 1.1 (if

ϕ ∈ ∆(1)). Furthermore, it contains the case likeϕ(x) = x logα(1 + x) (α > 0).

2. RESULT

Theorem 2.1. Let {an} ∈ Fϕ for ϕ ∈ ∆(2). Then the series (1.1) is a Fourier series and the
following estimate holds

(2.1)
∫ π

0

|f(x)|dx ≤ Cϕ

∞∑
n=1

ϕ

(
1

n

∞∑
k=n

ϕ(|∆ak|)

)
,

whereCϕ is a constant depending only onϕ.

Remark 2.2. In [3] and [4] L. Leindler investigated a relation among classes of numerical se-
quences other thanFp (see the classes denoted bySp, F∗

p , Sp(δ), Sp(A)) and he proved that all
these classes coincide. Later in [7] we defined the classes of sequencesSϕ, F∗

ϕ, Sϕ(δ), Sϕ(A)
exchanging the functionsxp to ϕ(x) and showed that all these classes also coincide. Therefore
in Theorem 2.1 the classFϕ can be replaced by any of the above mentioned classes, ifϕ ∈ ∆(2).
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3. L EMMAS

Lemma 3.1. ([11]). Let the nullsequence{an} be of bounded variation and

∞∑
i=2

[i/2]∑
k=1

∣∣∣∣∆ai−k −∆ai+k
k

∣∣∣∣ <∞

then (1.1) is a Fourier series and the following estimate holds:

(3.1)
∫ π

0

|f(x)|dx ≤ C

 ∞∑
k=0

|∆ak|+
∞∑
i=2

∣∣∣∣∣∣
[i/2]∑
k=1

∆ai−k −∆ai+k
k

∣∣∣∣∣∣
 ,

whereC is some absolute constant.

Lemma 3.2. ([1]). Let{an} be a nullsequence. Then the following estimate holds:

(3.2)
∞∑
i=2

[i/2]∑
k=1

∣∣∣∣∆ai−k −∆ai+k
k

∣∣∣∣ ≤ Cp

∞∑
s=1

∆(p)
s ,

where

∆(p)
s =

{
1

2s−1

2s∑
k=2s−1+1

|∆ak|p
} 1

p

, 1 < p ≤ 2,

andCp is a constant depending only onp.

Lemma 3.3. ([5]). If Ψ(x)
x

is increasing then for all sequences{an} and{bn} of nonnegative
numbers

Ψ

(∑n
i=1 aibi∑n
i=1 ai

)
≤
∑n

i=1 aiΨ(2bi)∑n
i=1 ai

holds.

Lemma 3.4. ([6]). Letρ(x) denote a nonnegative function increasing to infinity such thatρ(x)
x

is decreasing to zero whenx is increasing from zero to infinity. Furthermore, ifan ≥ 0, λn > 0
for all n, then

(3.3)
∞∑
n=1

λnρ

(
an
λn

n∑
k=1

λk

)
≤ Cρ

∞∑
n=1

λnρ

(
∞∑
k=n

ak

)
,

whereCρ depends only on the functionρ(x).

Lemma 3.5. Let bn ≥ 0 for all n and letϕ be the inverse of the functionϕ(x) ∈ ∆(2). Then

(3.4)
∞∑
n=1

ϕ(bn) ≤ Kϕ ·
∞∑
n=1

ϕ

(∑∞
k=n bk
n

)
,

whereKϕ is a constant depending only onϕ.

Proof. Since ϕ(x)
x

is decreasing to zero ifx → ∞, therefore using Lemma 3.4 and taking
ρ(x) = ϕ(x), bn = n · an, λn = 1, we get

∞∑
n=1

ϕ(bn) ≤ Kϕ ·
∞∑
n=1

ϕ

(
∞∑
k=n

bk
k

)
,

whence the statement of Lemma 3.5 is obtained. �
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4. PROOF

Proof of Theorem 2.1.Letϕ ∈ ∆(2) andbn = ϕ(|∆ an|).Using Lemma 3.5 and that{an} ∈ Fϕ
we have that

(4.1)
∞∑
n=1

|∆an| ≤ K ·
∞∑
n=1

ϕ

(
1

n

∞∑
k=n

ϕ(|∆an|)

)
<∞,

whereK depends only onϕ. It now follows that the sequence{an} is of bounded variation.
Further on, we use the following notations:

∆(ϕ)
s := ϕ

{
1

2s−1

2s∑
k=2s−1+1

ϕ(|∆ ak|)

}
, p′ > 1

denotes a number for whichϕ(x)

xp′ ↑ on (0;A), whereA = sup
k
|∆ak|, and byq we denote a

number satisfyingϕ(x)
xq ↓ (see the definition ofϕ ∈ ∆(2)).

Now we will prove that for any1 < p < p′,

(4.2)
∞∑
s=1

2s∆(p)
s ≤ 2q/p

∞∑
s=1

2s∆(ϕ)
s

holds.
Since forψ(t) = ϕ(t1/p) the function ψ(t)

t
is increasing thus using Lemma 3.3 and that

ϕ(21/px) ≤ 2
q
pϕ(x) we get

(4.3) ψ

(∑2s

k=2s−1+1 |∆ak|p

2s−1

)
≤ 2

q
p

∑2s

k=2s−1+1 ϕ(|∆ak|)
2s−1

.

From (4.3), taking into account thatϕ(cx) ≤ cϕ(x) if c > 1, we obtain

(4.4) ϕ

[
ψ

(∑2s

k=2s−1+1 |∆ak|p

2s−1

)]
≤ 2

q
pϕ

(∑2s

k=2s−1+1 ϕ(|∆ak|)
2s−1

)
.

Sinceϕ(ψ(t)) = t1/p so from (4.4) we have

(4.5) ∆(p)
s =

{∑2s

k=2s−1+1 |∆ak|p

2s−1

} 1
p

≤ 2q/pϕ

(∑2s

k=2s−1+1 ϕ(|∆ak|)
2s−1

)
= 2q/p∆(ϕ)

s .

From (4.5), (4.2) immediately follows.
Now we show that

(4.6)
∞∑
s=1

2s∆(ϕ)
s ≤ 4 ·

∞∑
s=1

ϕ

(∑∞
k=s ϕ(|∆ak|)

s

)
.

Since the sequenceUs = 1
s

∑∞
k=s ϕ(|∆ak|) is monotone decreasing, we obtain

n∑
s=1

2s∆(ϕ)
s = 2 ·

n∑
s=1

2s−1ϕ

(
1

2s−1

2s∑
k=2s−1+1

ϕ(|∆ak|)

)

≤ 4 ·
2n−1∑
s=1

ϕ(Us) = 4 ·
2n−1∑
s=1

ϕ

(
1

s

∞∑
k=s

ϕ(|∆ak|)

)
.(4.7)

Settingn→∞ we have from (4.7) the inequality (4.6).
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Collecting (4.1), (4.2), (4.6), using Lemma 3.1 and Lemma 3.2, we get that (1.1) is a Fourier
series and (2.1) is true. Thus Theorem 2.1 is proved. �
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