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ABSTRACT. A L'-estimate will be established for cosine series, considering the generalized
Fomin-classF,,, wherey is a function more general than the power function
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1. INTRODUCTION

Let
(1.1) f(z) = % + Z {,, COS NT.
n=1

Many authors ([1],[[2],[[9] —[[15]) have investigated coefficient conditions guaranteeing that
) is a Fourier series of some functigre L' and they have given estimates o | f (2)|dx
via the sequencéu,, }.

Recently Z. Tomovski[[15] proved a theorem of this type by using the class of coefficients
defined by Fomin [1] as follows: a sequenge, } belongs taF, (p > 1) if a; — 0 and

(1.2) Z{%Z\Aai\p} < 0.
k i=k

=1

Now we can formulate Z. Tomovski’s result [15]:
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2 JOZSEFNEMETH

Theorem 1.1.Let{a,} € F,, 1 < p < 2, then the serieq (1.1) is a Fourier series and the
following inequality holds:

(1.3) /OW F@lde <6,y {% 3 mmp} ,
n=1 k=n

whereC), depends only op.

Recently we (]7]) investigated the properties of classes of numerical sequences obtained by
using functions more general than the power functions. Such functions were used first of all
in the works of H.P. Mulholland [5] and M. Mateljeviand M. Pavio\ [8]. The following
definition is due to Mateljed and Pavlo\.

A(q,p) (¢ > p > 0) denotes the family of the nonnegative real functigris) defined on
[0; 0o) with the following propertiesy(0) = 0, % IS nonincreasing anq(,f—) is nondecreasing
on (0; c0). A will denote the set of the functions(z) € A(q, p) for someg > p > 0.

Using this notion in[[7] we defined the following class: a nullsequeficg belongs to the
classF, for somep € A if

(1.4) > ® (% Zs@ﬂAakD) < o0,
n=1 k=n

whereyp is the inverse of the functiop.

The aim of the present paper is to generalize Thedrein 1.1 Usingstead ofF,, where
v € A. Since our goal is to get a result concerning such functiongas= x log®(1 + z) and
not only for functions which are generalizationsiif(p > 1), we therefore need to define two
subclasses af. Namely we use the following definitiongs ") denotes the family of functions
¢(x) belonging toA(q, p) for someq > p > 1 and A® is the collection of functions(z)
from A(q, 1) for someg > 1 such that for alld > 0 there existy := p(A) > 1 satisfying the
condition that?%) is nondecreasing oft); A). It is obvious thatA\( ¢ A®.

After giving these definitions we can formulate our result which generalizes Th¢orem 1.1 (if
¢ € AW), Furthermore, it contains the case likér) = = log®(1 + z) (o > 0).

2. REsuLT

Theorem 2.1. Let {a,} € F, for ¢ € A®. Then the serieg (I].1) is a Fourier series and the
following estimate holds

(2.1) /0W|f(as>|dx§0¢2¢(%Zso(mczm),
n=1 k=n

whereC,, is a constant depending only gn

Remark 2.2. In [3] and [4] L. Leindler investigated a relation among classes of numerical se-
quences other thaf, (see the classes denoted$)y 7, S,(d), S,(A)) and he proved that all
these classes coincide. Later(in [7] we defined the classes of sequencgs, S,(6), S,(A)
exchanging the functions’ to ¢(x) and showed that all these classes also coincide. Therefore
in Theore the clask, can be replaced by any of the above mentioned classes; i\
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3. LEMMAS

Lemma 3.1. ([11]). Let the nullsequencgr, } be of bounded variation and

i % A — Aajyy
=2 k=1
then [1.1) is a Fourier series and the following estimate holds:

< 00

oo |[i/2]

(3.1) /|f )dz < C Z\Aak!JrZ ZA“’kkA“”’“ ,

=2 k=1

whereC is some absolute constant.

Lemma 3.2. ([1]). Let{a, } be a nullsequence. Then the following estimate holds:

oo [i/2]
<C, Z A(p)

(3.2) Z

=2 k=1

Aa;_j — Aaz-ﬁ-k

where

1
28 D
1
Agp) = {251 E |Aak‘p} ) 1< p S 2a

k=25-141
and(, is a constant depending only gn

Lemma 3.3. ([5]). If X2 is increasing then for all sequencés,, } and{b,} of nonnegative
numbers
T (2?1 aibi) < 2im1 GV (2h)
i )T i Qi
holds.

Lemma 3.4. ([6]). Letp(x) denote a nonnegative function increasing to infinity such @&Tét
is decreasing to zero whenis increasing from zero to infinity. Furthermoregif > 0, A\, > 0
for all n, then

o0 an n oo oo
n=1 " k=1 n=1 k=n
whereC, depends only on the functigiiz).

Lemma 3.5. Leth,, > 0 for all n and let be the inverse of the functign(x) € A®. Then

(3.4) ga(b ) < K Z ( knb’“),

where K is a constant depending only gn

Proof. Since “”z is decreasing to zero it — oo, therefore using Lemm@ 4 and taking
p(x) =P(x), by =n-an, A\, =1, we get

Y P <Kz ) p (Z %) :

whence the statement of Leminal3.5 is obtained. 0
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4. PROOF

Proof of Theorerfi 2]1Let € A® andb, = ¢(|Aa,|). Using Lemma 3]5 and thdt,,} € F,
we have that

(4.1) > Ay SK-ZGGZMIA%D) < o0
n=1 n=1 k=n

whereK depends only orp. It now follows that the sequende., } is of bounded variation.
Further on, we use the following notations:

28

1 /
A®) ;:¢{251 > ¢(|Aak|)}, p>1

k=2s-141

denotes a number for which2 1 on (0; ), where A =

number satisfying?2) | (see the definition op € A®).
Now we will prove that for anyt < p < p/,

4.2) Z 25 AW) < 9a/p Z 2°A

holds.
Since foriy(t) = ¢(t'/?) the function@ is increasing thus using Lemn@.S and that

p(2/73) < 20 () we get

(zk - 1+1|Aak|p> < ot Dicz 101 (1 A])

281 251

(4.3)

From [4.3), taking into account tha{cz) < cp(x) if ¢ > 1, we obtain

(4.4) ip[ (Zk 2821S+11|Aak|p>] < 2,, (Zk 25— 124;1 910(|Aak|))

Sincep(¢(t)) = t'/? so from [4.4) we have

(4.5) AP — {Zk 25141 ‘Aak|p} < 20/ (Zk 2s-141 @(’AakD) _ 2q/pAg¢)

S 251 251

From (4.%), [(4.R) immediately follows.
Now we show that

(4.6) Zzs ) <4 i:: <stw|Aak|))

Since the sequendé, = % Y re, ©(]Aak]) is monotone decreasing, we obtain

n n 2%
Z 23A£fp) —92. Z 28*1¢ (251—1 Z (p(‘ACLH))
s=1 s=1

k=2s—141

2n—1 an—1 oo
(4.7) <4 Zw(zfs):zx-Z@(%Z@(makD).
s=1 s=1 k=s

Settingn — oo we have from[(4]7) the inequality (4.6).
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Collecting [4.1).[(4.R)[(4]6), using LemrpaB.1 and Lenima 3.2, we gefthat (1.1) is a Fourier
series and (2]1) is true. Thus Theorlerm 2.1 is proved. O
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